所属成套资源:2023年中考数学以三种题型出现必考压轴题27个小微专题精炼
专题09 平移折叠旋转类必考的解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼
展开
这是一份专题09 平移折叠旋转类必考的解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题09平移折叠旋转类必考的解答题精炼原卷版docx、专题09平移折叠旋转类必考的解答题精炼解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
1. 如图,已知一次函数y1=kx+b的图像与函数y2=(x>0)的图像交于A(6,-),B(,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.
(1)求y1与y2的解析式;
(2)观察图像,直接写出y1<y2时x的取值范围;
(3)连接AD,CD,若△ACD的面积为6,则t的值为 .
2. 如图,将矩形纸片折叠,使点B与点D重合,点A落在点P处,折痕为.
(1)求证:;
(2)若,求的长.
3.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.
4.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
(1)当点E恰好在AC上时,如图1,求∠ADE的大小;
(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.
5. 如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.将绕原点顺时针旋转后得到.
(1)请写出、、三点的坐标:_________,_________,_________
(2)求点旋转到点的弧长.
6. (1)如图,和是等腰直角三角形,,点C在OA上,点D在线段BO延长线上,连接AD,BC.线段AD与BC的数量关系为______;
(2)如图2,将图1中的绕点O顺时针旋转()第一问的结论是否仍然成立;如果成立,证明你的结论,若不成立,说明理由.
(3)如图,若,点C线段AB外一动点,,连接BC,
①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值______;
②若以BC为斜边作,(B、C、D三点按顺时针排列),,连接AD,当时,直接写出AD的值.
7. 如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.
(1)如图1,若,且,,求的度数;
(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想;
(3)若,且,将沿直线翻折至所在平面内得到,点是的中点,点是线段上一点,将沿直线翻折至所在平面内得到,连接.在点,运动过程中,当线段取得最小值,且时,请直接写出的值.
8. 综合与实践
问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
问题解决:
(2)如图②,在三角板旋转过程中,当时,求线段CN的长;
(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
9. 已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
10. 某校一数学兴趣小组在一次合作探究活动中,将两块大小不同的等腰直角三角形和等腰直角三角形,按如图1的方式摆放,,随后保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接.该数学兴趣小组进行如下探究,请你帮忙解答:
(1)【初步探究】如图2,当时,则_____;
(2)【初步探究】如图3,当点E,F重合时,请直接写出,,之间的数量关系:_________;
(3)【深入探究】如图4,当点E,F不重合时,(2)中的结论是否仍然成立?若成立,请给出推理过程;若不成立,请说明理由.
(4)【拓展延伸】如图5,在与中,,若,(m为常数).保持不动,将绕点C按逆时针方向旋转(),连接,,延长交于点F,连接,如图6.试探究,,之间的数量关系,并说明理由.
相关试卷
这是一份专题27 二次函数综合类必考的解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题27二次函数综合类必考的解答题精炼原卷版docx、专题27二次函数综合类必考的解答题精炼解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份专题21 圆的求值与证明类必考的解答题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题21圆的求值与证明类必考的解答题精炼原卷版docx、专题21圆的求值与证明类必考的解答题精炼解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份专题20 圆的求值与证明类必考的填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题20圆的求值与证明类必考的填空题精炼原卷版docx、专题20圆的求值与证明类必考的填空题精炼解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。