|试卷下载
终身会员
搜索
    上传资料 赚现金
    黑龙江省哈尔滨市第四十七中学校2023-2024学年七年级上册月考数学试题(含解析)
    立即下载
    加入资料篮
    黑龙江省哈尔滨市第四十七中学校2023-2024学年七年级上册月考数学试题(含解析)01
    黑龙江省哈尔滨市第四十七中学校2023-2024学年七年级上册月考数学试题(含解析)02
    黑龙江省哈尔滨市第四十七中学校2023-2024学年七年级上册月考数学试题(含解析)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨市第四十七中学校2023-2024学年七年级上册月考数学试题(含解析)

    展开
    这是一份黑龙江省哈尔滨市第四十七中学校2023-2024学年七年级上册月考数学试题(含解析),共15页。试卷主要包含了选择题,填空,解答题等内容,欢迎下载使用。

    一、选择题(每题3分,共30分)
    1.下列方程是一元一次方程的是( )
    A.B.C.D.
    2.平面直角坐标系中,点所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3.16的平方根是( )
    A.16B.C.4D.
    4.在实数,0,,,,中无理数有( )个
    A.4B.3C.2D.1
    5.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是( )
    A.B.C.D.
    6.如图,直线、相交于点,平分,若,则的度数是( )
    A.B.C.D.
    7.如图能判断的是( )
    A.B.C.D.
    8.一件衣服标价元,按八折销售后仍可获利,设这件衣服进价为( )
    A.210B.180C.200D.220
    9.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多;如用新工艺,则废水排量要比环保限制的最大量少.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?如果设新工艺的废水排量为,旧工艺的废水排量为.那么下面所列方程正确的是( )
    A.B.
    C.D.
    10.下列四个命题:①是64的立方根;②5是25的算术平方根;③两条直线被第三条直线所截,内错角相等;④数轴上的点对应的都是有理数;⑤无限小数都是无理数.其中真命题有( )个
    A.1B.2C.3D.4
    二、填空(每小题3分,共24分)
    11.方程是一元一次方程, .
    12. .
    13.已知,的立方根 .
    14.若,则 .
    15.在直角坐标系中,,,若直线轴且,则 .
    16.几个人种树苗,如果每人种棵,剩余棵,如果每人种棵,缺棵,一共有树苗 棵.
    17.如图,把长方形纸片ABCD沿折痕EF折叠,使点B与点D重合,点A落在点G处,,则的度数为 .
    18.如图,,,,,, .
    三、解答题(19,21每题8分.20,22,23,24,25每题10分)
    19.解方程
    (1)
    (2)
    20.计算
    (1)
    (2)
    21.在平面直角坐标系中,三角形三个顶点的坐标分别为,,.
    (1)画出三角形;
    (2)将三角形平移到三角形,平移后,请画出三角形;
    (3)直接写出三角形面积______.
    22.对于正有理数,可用表示不超过的最大整数,例如.
    (1)______,______.
    (2)设正有理数的整数部分是,表示的小数部分用含,的式子表示______,用含的式子表示______.
    (3)在(2)情况下,求的值.
    23.某班计划购买A种、B种两种笔记本,已知购买一个A种笔记本比购买一个B种笔记本多6元,若购买3个A笔记本和5个B种笔记本,需用98元.
    (1)求购买每个A种、B种的笔记本各多少元?
    (2)若该班购买了40个笔记本,正好花费550元,那么该班购买了多少个A种笔记本?
    24.已知:点E在线段间(如图1).连接..
    (1)求证:.
    (2)如图2,点F在点E右侧.连接.
    求证.
    (3)如图3在(2)的条件下,线段,的延长线交于点H.交于点K.当平分,平分,,时,求的度数.
    25.已知:四边形是长方形,点,分别在边和上,,,,
    (1)______,______.
    (2)设的面积为,用含的式子表示S.
    (3)在(2)的条件下,当的情况下,动点从出发沿线段运动,速度为每秒个单位长度运动时间为求为何值时的面积与面积相等?
    参考答案与解析
    1.C
    【分析】本题主要考查了一元一次方程.根据“只含有一个未知数,且未知数的次数是1的整式方程是一元一次方程”,即可求解.
    【详解】解:A、不是一元一次方程,故本选项不符合题意;
    B、不是一元一次方程,故本选项不符合题意;
    C、是一元一次方程,故本选项符合题意;
    D、不是一元一次方程,故本选项不符合题意;
    故选:C
    2.C
    【分析】本题考查点位于的象限,解题关键在于熟记各象限中点的坐标特征.利用各象限内点的坐标特征解题即可.
    【详解】解:点的横坐标为负数,纵坐标为负数,
    故该点在第三象限.
    故选∶C.
    3.D
    【分析】本题主要考查了求一个数的平方根.根据平方根的性质,即可求解.
    【详解】解:16的平方根是.
    故选:D
    4.C
    【分析】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如,,(每两个8之间依次多1个等形式.分别根据无理数、有理数的定义即可判定选择项.
    【详解】解:,
    在实数,0,,,,中,
    ,是无理数,
    在实数,0,,,,中无理数有2个,
    故选:C.
    5.B
    【分析】根据图形平移的特征逐项判断即可.
    【详解】A.图形方向改变,故A不符合题意.
    B.只改了变图形的位置,图形的大小和方向没有变化,故B符合题意.
    C.图形方向改变,故C不符合题意.
    D.图形方向改变,故D不符合题意.
    故选:B.
    【点睛】本题考查图形的平移.了解图形的平移只改变图形的位置,不改变图形的大小和方向是解答本题的关键.
    6.D
    【分析】由,利用对顶角,由平分,可得即可.
    【详解】解:,

    平分,

    答案:.
    【点睛】本题考查对顶角性质与角平分线定义,掌握对顶角性质与角平分线定义是解题关键.
    7.C
    【分析】本题主要考查了平行线的判定.根据平行线的判定定理,逐项判断,即可求解.
    【详解】解:A、与是对顶角,无法判断,故本选项不符合题意;
    B、与是同旁内角,无法判断,故本选项不符合题意;
    C、能判断,故本选项符合题意;
    D、与是邻补角,无法判断,故本选项不符合题意;
    故选:C
    8.C
    【分析】此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价.设这件服装的进价为元,找出相等关系为:进价,根据等量关系列方程求解即可.
    【详解】解:设这件服装的进价为元,
    依题意得:,
    解得:,
    则这件服装的进价是元.
    故选C.
    9.A
    【分析】设新工艺的废水排量为,旧工艺的废水排量为,根据如用旧工艺,则废水排量要比环保限制的最大量还多;如用新工艺,则废水排量要比环保限制的最大量少列方程.
    【详解】设新工艺的废水排量为,旧工艺的废水排量为,由题意得

    故选:A.
    【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.
    10.A
    【分析】根据立方根和算术平方根的定义、平行线的性质、无理数与数轴逐项判断即可.
    【详解】64的立方根是4,故①是假命题;
    5是25的算术平方根,故②是真命题;
    两条平行直线被第三条直线所截,内错角相等,故③是假命题;
    数轴上的点与实数一一对应,故④是假命题;
    无限不循环小数都是无理数,故⑤是假命题.
    ∴真命题有1个,
    故选:A.
    【点睛】本题考查命题真、假的判断、立方根和算术平方根的定义、平行线的性质、无理数与数轴逐.正确掌握相关定义、性质与判定是解题关键.
    11.
    【分析】本题考查了一元一次方程的基本概念,根据概念即可作答.由方程为一元一次方程,根据一元一次方程的概念即可求出的值
    【详解】解:∵为一元一次方程,
    ∴,且,
    解得:且,
    所以,
    故答案为:
    12.##
    【分析】本题考查了求绝对值及比较实数,先确定为负数,进而求绝对值即可得解。
    【详解】解:∵,
    ∴,

    13.2
    【分析】此题考查了算术平方根的非负性,立方根的定义,熟练掌握理解算术平方根的非负性是解题的关键.根据算术平方根的非负性得到x的值,以及y的值,再根据立方根定义求出答案.
    【详解】解:∵,,
    ∴,
    ∴,
    ∴,
    ∵8的立方根为2,
    ∴的立方根为2
    故答案为2.
    14.##
    【分析】本题考查了二次根式的性质,根据二次根式的性质求解即可.
    【详解】解:∵,
    ∴,
    故答案为:.
    15.或
    【分析】本题考查平面直角坐标系中平行的特点和平移时坐标的变化规律,解题时注意分类讨论.在平面直角坐标系中与y轴平行,则它上面的点横坐标相同,可求a,由,可求b点纵坐标,从而即可得解.
    【详解】解:∵轴,,,
    ∴点A横坐标与点B横坐标相同,
    ∴,
    解得,
    又∵,
    ∴,即
    解得或
    ∴或,
    故答案为:或.
    16.6
    【分析】本题考查了一元一次方程的应用,由参与种树的人数为人,分别用“每人种稞,则剩下棵树苗未种;如果每人种稞,则缺棵树苗”表示出树苗总棵树列方程即可.
    【详解】解:设参与种树的人数为人.
    则,

    即:人参与种树.
    故答案是:.
    17.56
    【分析】根据折叠的性质和长方形的性质以及三角形内角和解答即可.
    【详解】解:∵把长方形纸片ABCD沿折痕EF折叠,使点B与点D重合,点A落在点G处,
    ∴∠G=∠A=90°,∠GDE=∠B=90°,
    ∵∠DFG=68°,
    ∴∠GDF=∠G-∠DFG=90°-68°=22°,
    ∴∠ADE=∠GDE-∠GDF=90°-22°=68°,
    ∴∠EDC=∠ADC-∠ADE=90°-68°=22°,
    ∴∠DEC=90°-∠EDC=90°-22°=68°,
    由折叠可得:∠FEB=∠FED,
    ∴,
    故答案为:56.
    【点睛】此题考查翻折问题,关键是根据折叠前后图形全等和长方形性质解答.
    18.36
    【分析】本题主要考查了三角形内角和定理,平行线的性质.根据三角形内角和定理,可得,从而得到,再由平行线的性质可得,即可求解.
    【详解】解:∵,
    ∴,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴.
    故答案为:36
    19.(1),;
    (2).
    【分析】本题考查利用平方根,立方根概念解方程,解题的关键是掌握平方根,立方根的概念.
    (1)将方程变形,再用平方根概念即可解得x的值;
    (2)将方程变形,再用立方根概念即可解得x的值.
    【详解】(1)解::,
    两边同除以9得:,
    ∴,
    ∴,;
    (2)解:∵,
    ∴,
    ∴,
    解得:.
    20.(1)11
    (2)
    【分析】本题主要考查了二次根式的混合运算:
    (1)先根据算术平方根的性质,立方根的性质化简,再计算,即可求解;
    (2)先计算乘法,再合并,即可求解.
    【详解】(1)解:
    (2)解:
    21.(1)见解析
    (2)见解析
    (3)6
    【分析】本题考查坐标与图形,坐标与平移.
    (1)直接描出点A,B,C的坐标,即可求解;
    (2)根据点A平移到点处,确定平移的方向和距离,作图即可;
    (3)直接根据三角形的面积公式计算,即可得解.
    【详解】(1)解:如图,即为所求;
    (2)解:如图,即为所求;
    (3)解:三角形面积为.
    故答案为:6
    22.(1),;
    (2)或;
    (3)的值为或或
    【分析】(1)先计算有理数乘法,再根据定义求解即可;
    (2)根据数的组成可得,分和两种情况讨论求解即可得;
    (3)分和两种情况列方程讨论求解即可.
    【详解】(1)解:,,
    故答案为:,;
    (2)解:∵设正有理数的整数部分是,表示的小数部分
    ∴,
    当时,,
    当时,,
    故答案为:,或;
    (3)解:当时,
    ∵,
    ∴,

    ∴为整数或或,即是或或,
    当时,,,此时,
    当时,,,不符合题意,
    当时,,,此时,
    当时,
    ∵,
    ∴,

    ∴为整数或,即是或,
    当时,,,此时,
    当时,,,不符合题意,
    综上所述为或或
    【点睛】本题考查了列代数式,整式的加减,有理数的乘法以及解一元一次方程,分类讨论是解题的关键.
    23.(1)每个A种笔记本16元,每个B种笔记本10元
    (2)25
    【分析】本题主要考查了二元一次方程组的应用和一元一次方程的应用:
    (1)设每个A种笔记本a元,每个B种笔记本b元,根据题意,列出方程组,即可求解;
    (2)设该班购买了x个A种笔记本,则购买了个A种笔记本,根据题意,列出方程,即可求解.
    【详解】(1)解:设每个A种笔记本a元,每个B种笔记本b元,根据题意得:

    解得:,
    答:每个A种笔记本16元,每个B种笔记本10元;
    (2)解:设该班购买了x个A种笔记本,则购买了个A种笔记本,根据题意得:

    解得:,
    答:该班购买了25个A种笔记本,
    24.(1)见解析
    (2)见解析
    (3)
    【分析】(1)过点E作,可得,再由,可得,即可求证;
    (2)过点F作,可得,从而得到,即可求证;
    (3)设,可得,,由(1)得:,再由,可得,从而得到,再由三角形内角和定理可得,然后根据,可得,,最后根据三角形内角和定理,即可求解.
    【详解】(1)解:如图,过点E作,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;
    (2)解:如图,过点F作,
    ∵,
    ∴,
    ∴,
    ∴,
    即;
    (3)解:设,
    ∵平分,平分,
    ∴,
    ∴,
    由(1)得:,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    解得:,
    ∴,
    ∴.
    【点睛】本题主要考查了平行线的判定和性质,三角形内角和定理,熟练掌握平行线的判定和性质,三角形内角和定理,灵活作辅助线构造平行线是解题的关键.
    25.(1),;
    (2);
    (3)当或秒时,的面积与面积相等.
    【分析】(1)根据算术平方根和绝对值的非负性即可求解;
    (2)根据面积公式即可求得;
    (3)分当点在上和点在上,两种情况利用一元一次方程,分类讨论求解即可.
    【详解】(1)解:∵
    ∴,,
    解得,,
    故答案为:,;
    (2)解:∵,,,,,
    ∴,,


    ∴;
    (3)解:由得,
    ∴,
    当点在上时,
    ∵,,的面积与面积相等,
    ∴,,
    ∴,
    ∴秒时,的面积与面积相等,
    当点在上时,
    ∵,,的面积与面积相等,

    ∴,
    ∴,
    ∴秒时,的面积与面积相等,
    综上所述,当或秒时,的面积与面积相等.
    【点睛】本题主要考查了绝对值和算术平方根的非负性,坐标与图形,一元一次方程的应用,熟练掌握算术平方根的非负性,坐标与图形,一元一次方程的应用是解题的关键.
    相关试卷

    黑龙江省哈尔滨市第四十七中学2023-2024学年九年级上学期期末数学试题(含解析): 这是一份黑龙江省哈尔滨市第四十七中学2023-2024学年九年级上学期期末数学试题(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    黑龙江省哈尔滨市第十七中学校2023-2024学年初中六年级上册期中数学试题(五四制)(含解析): 这是一份黑龙江省哈尔滨市第十七中学校2023-2024学年初中六年级上册期中数学试题(五四制)(含解析),共12页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    黑龙江省哈尔滨市第十七中学校2023-2024学年九年级上学期10月月考数学试题: 这是一份黑龙江省哈尔滨市第十七中学校2023-2024学年九年级上学期10月月考数学试题,共10页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map