![3.3 立方根 浙教版七年级上册数学教案01](http://img-preview.51jiaoxi.com/2/3/15080864/0-1702519346928/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学浙教版七年级上册3.3 立方根教案
展开1.了解立方根和开立方的概念,掌握立方根的性质.通过实例经历立方根概念的产生过程.
2.会用根号表示一个数的立方根.
3.能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.
二、教学重难点:
难点:立方根的求法,立方根与平方根的联系及区别.
重点:立方根的概念和开立方运算.
三、教学过程:
(一)导入新课:
电脑显示一个魔方
师:你们喜欢玩魔方吗?这是由8个同样大小的小立方体组成的魔方,这8个小立方体可以重新排列,组成魔方表面的各种不同的美丽图案.现在要做一个体积为8 cm3的立方体模型,它的棱要取多少长?你是怎么知道的?
生:思考后回答,从而引入本节知识.
(二)探究新知:
1.知识讲解:从熟悉的事物引入立方根的概念,让学生在平方根的基础上试述立方根概念,然后由教师总结.
总结:一般地,一个数x的立方等于a,即,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做.如:,则2叫做8的立方根,即;,则是的立方根,即.其中a是被开方数,3是根指数,符号读做“三次根号”.(符号中的根指数“3”不能省略)
2.例题讲解:
例1 求下列各数的立方根:
(1)27; (2); (3); (4); (5)0 ;
解:(1)因为,所以27的立方根是3,即.
(2)因为,所以的立方根是,即.
(3)因为,所以的立方根是,即.
(4)因为,所以的立方根是,即.
(5)因为,所以0的立方根是0,即.
总结解题方法和在过程中需要注意的问题.
强调:(1)求立方根用到立方运算.(2)负数的立方根注意符号.
例2 计算:(1) ; (2) ;
解:(1) (2)
通过例题的学习,回答问题:
(1)一个正数有几个立方根?是正数还是负数?为什么?
(2)是否任何负数都有立方根?如有,有几个?是正数还是负数?
(3)0的立方根是什么?
引导学生讨论、交流,教师再总结:每一个数a都只有一个立方根,一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.任意数a的立方根可表示为“”,读做“三次根号a”.
(三)课内小结:
以提问的方式,先由学生小结,再由教师归纳:
1.通过本节课的学习你获得了哪些知识?
2.你能总结出平方根和立方根的异同点吗?
(四)课堂练习:
(五)作业布置:
初中数学浙教版七年级上册4.4 整式教案: 这是一份初中数学浙教版七年级上册4.4 整式教案,共3页。教案主要包含了合作学习,新课教学,课堂总结,课堂练习,作业布置等内容,欢迎下载使用。
八年级数学教案示例:立方根: 这是一份八年级数学教案示例:立方根,共5页。教案主要包含了教学目标,教学重点和难点,教学方法,教学手段,教学过程等内容,欢迎下载使用。
八年级数学教案:立方根: 这是一份八年级数学教案:立方根,共12页。