湖南省衡阳市2023-2024学年七年级上学期第一次月考数学试卷(含解析)
展开七年级数学
一、选择题(共12小题)
1.的绝对值是( )
A.3 B. C. D.
2.若气温零上记作,则气温零下记作( )
A. B. C. D.
3.下列各组数中互为相反数的是( )
A.3和 B.和 C.和 D.和
4.把写成省略括号的代数和的形式,确的是( )
A. B. C. D.
5.下面的说法中,正确的是( )
A.正有理数和负有理数统称有理数 B.整数和小数统称有理数
C.整数和分数统称有理数 D.整数、零和分数统称有理数
6.在四个数中,最小的数是( )
A.0 B. C.1 D.
7.在.这些有理数中非负数有( )
A.4个 B.5个 C.6个 D.7个
8.如图,数轴上点和点分別表示数和,则下列式子正确的是( )?
A. B. C. D.
9,已知数轴上点A代表的数是3,点B到原点的距离是9,则A,B两点间的距离是( )
A.6 B.9或12 C.12 D.6或12
10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出的值为( )
A.32 B.33 C.34 D.35
11.如果规定符号“”的意义为,则的值是( )
A.5 B. C.1 D.
12.若三个非零有理数满足,则的值为( )
A.3 B. C.0 D.或3
二、填空题(共6小题)
13.计算:_______
14.若,且,则_______。(填“>”“=”或“<”)
15.用“<”或“>”号填空:_______.
16.某同学在计算时,误将“+”看成“-”,结果是,则的正确结果是_______.
17.把1~9这九个数字填入的方格中,使其任意一行、任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛书”,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中的值为_______.
18.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第100个图案中有张白色纸片,则的值为_______.
三、解答题(共7小题)
19.计算:
(1); (2).
20.已知互为相反数,求的值.
21.已知是最小的正整数,是绝对值最小的有理数,在数轴上对应的点到原点的距离是6,求的值.
22.已知下列有理数:
(1)这些有理数中,整数有_______个,非负数有_______个.
(2)画数轴,并在数轴上表示这些有理数.
(3)把这些有理数用“<”号连接起来.
23.已知有理数满足.
(1)若,求的值;
(2)若,求的值.
24.“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩,鲁能巴蜀中学七年级的小张同学从学校了解到,上周五这一天,七年级各班共使用口罩1500只,喜欢统计的小张本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以1500只为标准,其中每天超过1500只的记为“+”,每天不足1500只的记为“-”,统计表格如下:
(1)本周哪一天七年级同学使用口罩最多,数量是多少只?
(2))本周共使用口罩多少只?
(3)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,且本周所用的普通医用口罩和N95型口罩数量之比为4∶1,求本周七年级所有同学们购买口罩的总金额?
25.先阅读,后探究相关的问题
【阅读】表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;可以看作,表示5与的差的绝对值,也可理解为5与两数在数轴上所对应的两点之间的距离.故当点在数轴上分别表示有理数两点之间的距离表示为,在数轴上两点之间的距离为.
(1)数轴上表示和4的两点和之间的距离表示为_______,如果,并且点表示的数为2,那么表示的数为_______;
(2)若点表示的整数为,则当为_______时,与的值相等;
(3)当_______时;有最小值(请直接写出的值);
(4)求出(3)中的最小值.
如图所示,已知数轴上两点对应的数分别为,点为数轴上一动点,对应的数为.
(1)若点到点,点的距离相等,求点对应的数的值;
(2)数轴上是否存在点,使点到点、点的距离之和为8?若存在,请求出的值若不存在,说明理由;
(3)已知,数轴上点从点向左出发,速度为每秒1个单位长度,同时点从点向左出发,速度为每秒3个单位长度,经秒后点(为原点)其中的一点恰好到另外两点的距离相等,求的值.
2023年10月第一次月考七年级数学
一、选择题(共12小题)
1.
解析:解:的绝对值是3.
故选:A.
2.解析:解:气温是零上4摄氏度记作,
气温是零下6摄氏度记作.
故选:C.
3.解析:解:A选项,,所以3和不互为相反数,不符合题意;
B选项,和互为相反数,符合题意;
C选项,所以和互为相反数,不符合题意;
D选项,所以和互为相反数不符合题意.
故选:B.
4.解析:解:根据去括号的原则可知:.
故答案为:A.
5.解析:解:A.正有理数、0和负有理数统称为有理数,故不符合题意;
B.无限不循环小数是无理数,故不符合题意;
C.整数和分数统称为有理数,故符合题意;
D.整数包括零,故不符合题意.
故选:C.
6.
解析:解:,
在四个数中,最小的数是.
故选:D.
7.解析:解:在.这八个数中,
非负数为,有5个.
故选:B.
8.解析:解:A、由图得,,故A不正确,不符合题意;
B.,故B正确,符合题意;
C.,故B不正确,不符合题意;
D.,故B不正确,不符合题意;
故选:B.
9.解析:解:点到原点的距离是9,
点代表的数是9或,
点代表的数是3,
,
两点间的距离是6或12,
故选:D.
10.解析:解:左边的数为连续的奇数1,3,5,7,9,11,上边的数为2,4,6,…,
,
上边的数与左边的数的和正好等于右边的数,
,,
故选:C.
11.解析:解:根据题中的新定义得:
原式.
故选:B.
12.解析:解:,,
当中有两个小于0时,原式;
当均大于0时,原式.
故选:D.
二、填空题(共6小题)
13.解析:解:.
故答案为:14.
14.解析:解:,
故的绝对值大于的绝对值,
.
故答案为:>
15.
解析:解:,
,
,
即,
故答案为:>.
16.解析:解:计算时,梠将“+”看成“-”结果得,
即:,
解得:.
.
故答案为:.
17.
解析:解:设8下方格子的数为,
根据题意,得,
移项得.
故答案为:3.
18.
解析:解:由图可得,
第1个图案中白色纸片的个数为:,
第2个图案中白色纸片的个数为:,
第3个图案中白色纸片的个数为:,,
第100个图案中白色纸片的个数为:,
故答案为:301.
三、解答题(共7小题)
19.
解析:解:(1)原式;
(2)原式.
20.解析:解:,绝对值具有非负性
,
解得,
互为相反数
.
21.解析:解:因为是最小的正整数,所以;
因为是绝对值最小的有理数,
所以;
因为到原点的距离是6,
所以;
当时,;
当时,.
22.
解析:解:(1)这些有理数中,整数有:,共3个,
非负数有:,共3个.
故答案为:3,3;
(2)在数轴上表示这些有理数如图:
(3)根据数轴可得.
23.解析:解:,
,
(1),
.
;
(2),
.
当时,,
当时,.
24.
解析:解:(1),
周一使用口筸最多,数量是:(只);
(2)(只),
答:本周共使用口唕7520只;
(3)根据题意,得:(元),
答:本周七年级所有同学们购买口罩的总金额为10528元.
25.
解析:解:(1)数轴上表示和4的两点和之间的距离表示为:;
如果,即,
解得:为或5,
故答案为:7;或5;
(2),表示点到和2的距离相等,
若点表示的整数为,则当为时,与的值相等;
故答案为:;
(3)表示在数轴上的对应点与1、2、3、……、2023所对应点的距离之和,要使代数式取最小值时,相应的的取值是,
故答案为:1012;
(4)时,
.
26.解析:解:(1)点到点、点的距离相等,
,
解得
答:点对应的数是1.
(2)由题意,得,即,
如果,得,解得;
如果,得无解;
如果,得,解得;
答:数轴上存在点,使得点到点、点的距离之和为8,此时的值为5或;
(3)
点(为原点)其中的一点恰好到另外两点的距离相等,可分为以下三种情况:
①,
解得:或
②,
解得:或
③,
解得:或(舍)
综上所述:为秒、秒、2秒、3秒、8秒时,点(为原点)其中的一点恰好到另外两点的距离相等.8
5
周一
周二
周三
周四
周五
1
2
3
4
5
6
7
8
9
10
11
12
A
C
B
A
C
D
B
B
D
C
B
D
题号
13
14
15
16
17
18
答案
14
3
301
2023-2024学年湖南省衡阳市雁峰区成章实验学校八年级(上)第一次月考数学试卷(含解析): 这是一份2023-2024学年湖南省衡阳市雁峰区成章实验学校八年级(上)第一次月考数学试卷(含解析),共13页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023-2024学年湖南省衡阳市衡山县七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年湖南省衡阳市衡山县七年级(上)期末数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2023-2024学年湖南省衡阳市衡南县七年级(上)期末数学试卷(含解析): 这是一份2023-2024学年湖南省衡阳市衡南县七年级(上)期末数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。