广东省惠州市惠阳区2021-2022学年六年级下学期数学期中试卷
展开这是一份广东省惠州市惠阳区2021-2022学年六年级下学期数学期中试卷,共14页。试卷主要包含了判断题,选择题,填空,计算,操作与实践,解决问题等内容,欢迎下载使用。
一、判断题(共5分)
1.若圆柱体积是圆锥的3倍,那么它们一定是等底等高。( )
2.如果a× 38 =b× 23 ,则a:b=16:9。( )
3.比例尺就是一个前项是1的比,它的比值小于1。( )
4.右图中图形A绕点O旋转180°后就可以得到图形B。 ( )
5.煤的总量一定,每天烧煤的数量与烧的天数成反比例。( )
二、选择题(共5分)
6.把一个圆柱削成一个与它等底等高的圆锥,圆锥的体积是削去部分的( )。
A.30%B.33%C.50%
7.将图形①绕点O逆时针旋转90°得到图形②的是( )。
A.B.C.
8.能与3:8组成比例的比是( )。
A.15:40B.0.6:0.24C.8:3
9.已知 B5 = 3A ,那么A和B( )。
A.成反比例B.成正比例C.不成比例
10.圆柱的底面半径和高都扩大到原米的2倍。它的体积扩大到原来的( )倍。
A.4B.6C.8
三、填空(共20分)
11.72: =15: 59 0.2:8=0.6:
12.如果2a=5b(a、b≠0),那么a:b= : 。
13.时针从4时绕中心点顺时针旋转90°后是 时,从4时到5时时针旋转了 °。
14.等底等高的圆柱和圆锥的体积之和是16.72dm3,圆锥的体积是 dm3。
15.已知一个比例的两个内项互为倒数,其中一个外项是0.4,另一个外项是 。
16.一个圆锥和一个圆柱的底面积与体积分别相等,已知圆柱的高是18cm,圆锥的高是 cm。
17. 是(线段)比例尺,表示图上1cm相当于实际距离 ,转化成数值比例尺是 。如果AB两地相距560千米,地图上相距 厘米。
18.推门是 现象,缆车运动是 现象,剪中国结是 现象。(选填“平移”“旋转”或“轴对称”)
19.将体积为56.52dm3的铁块熔铸成一个底面半径为6dm的圆锥形零件,圆锥的高是 dm。
20.在比例尺是1:1000的平面图上,量的一个长方形广场的长是24cm,宽是18cm,这个长方形实际的周长是 m。
21.在括号里填写“正比例”、“反比例”或“不成比例”。
(1)长方形的长一定,长方形的面积和宽。
(2)人的身高和跳的高度。
(3)圆柱的侧面积一定,圆柱的底面周长和高。
四、计算(共23分)
22.直接写出得数
57 ÷ 38 = 49 + 23 = 2.8÷70%= 25×0.4×5=
6- 710 = 811 × 3332 = 3.14×52= 0.3×0.2÷0.3×0.2=
23.解方程
(1)43 :x=0.75:1.8
(2)x: 87 = 72 : 25
(3)x6 = 4.59
24.计算下面图形的表面积
25.计算下面图形的体积(单位:dm)
五、操作与实践(共17分)
26.按要求画图形
(1)以直线MN为对称轴作图形A的轴对称图形,得到图形B。
(2)将图形B绕点顺时针旋转90°得到图形C。
(3)将图形C向右平移8格,得到图形D。
27.量一量,算一算,填一填
(1)量一量:学校到汽车站的图上距离是 cm,学校到公园的图上距离是 cm(四舍五入取整厘米数)。
(2)如果学校到汽车站的实际距离是1200m,那么,图上1cm表示实际距离是 m,这个示意图的比例尺是 。
(3)学校到公园的实际距离是 m。
(4)壮壮家在学校南偏东30°方向,实际距离为800m的地方,请在图中标出壮壮家的位置。
六、解决问题(共30分)
28.一种圆柱形通风管,底面直径是24cm,长是50cm。做100根这样的通风管至少需要多少平方米铁皮?29.一辆汽车的模型与实际长度的比是1:30,如果模型的长是15cm,汽车的长是多少米?(用方程解)30.在比例尺是1:3000000的地图上,量的甲、乙两地的距离为3.6厘米。一辆汽车以每时90千米的速度从甲地到乙地,多少时可以到达?
31.一个圆锥形沙堆,底面周长是12.56m,高是9m,用这堆沙在20m宽的公路上铺3cm厚,能铺多少米?
32.一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6m,池深1.2m。
(1)镶瓷砖的面积是多少平方米?
(2)这个水池最多能装水多少升?
答案解析部分
1.【答案】(1)错误
【知识点】圆柱与圆锥体积的关系
【解析】【解答】解:若圆柱体积是圆锥的3倍,那么它们不一定是等底等高。原题说法错误。
故答案为:错误。
【分析】等底等高的圆柱体积是圆锥体积的3倍,但是圆柱的体积是圆锥的3倍,它们不一定等底等高。
2.【答案】(1)正确
【知识点】比例的基本性质
【解析】【解答】解:a×38=b×23,所以a:b=23:38=16:9。
故答案为:正确。
【分析】在比例中,两个外项的积等于两个内项的积,据此作答即可。
3.【答案】(1)错误
【知识点】比例尺的认识
【解析】【解答】解:比例尺不一定是一个前项是1的比,它的比值也不一定小于1。
故答案为:错误。
【分析】比例尺=图上距离:实际距离,它的前项不一定是1,比值也不一定小于1。
4.【答案】(1)错误
【知识点】作旋转后的图形
【解析】【解答】解:图中图形A绕点O旋转180°后不能得到图形B。
故答案为:错误。
【分析】如图所示,图形A绕点O旋转180°后得到的B如下图所示。
5.【答案】(1)正确
【知识点】成反比例的量及其意义
【解析】【解答】解:煤的总量=每天烧煤的数量×烧的天数,所以煤的总量一定,每天烧煤的数量与烧的天数成反比例。
故答案为:正确。
【分析】若xy=k(k为常数,x,y≠0),那么x和y成反比例关系。
6.【答案】C
【知识点】圆柱与圆锥体积的关系
【解析】【解答】解:圆锥的体积是削去部分的50%。
故答案为:C。
【分析】等底等高圆柱的体积是圆锥体积的3倍,所以削去的部分是圆锥体积的2倍,故圆锥的体积是削去部分的50%。
7.【答案】B
【知识点】作旋转后的图形
【解析】【解答】解:将图形①绕点O逆时针旋转90°得到图形②的是B项中的图形。
故答案为:B。
【分析】绕图形上一点逆时针旋转一定的度数,先把这个点连接的边逆时针旋转相同的度数,然后把剩下的边连接起来即可。
8.【答案】A
【知识点】比例的认识及组成比例的判断
【解析】【解答】解:3:8=38
A项中,15:40=38,所以能与3:8组成比例;
B项中,0.6:0.24=52,所以不能与3:8组成比例;
C项中,8:3=83,所以不能与3:8组成比例。
故答案为:A。
【分析】在比例中,能组成比例的两个比的比值要相等,据此作答即可。
9.【答案】A
【知识点】成反比例的量及其意义
【解析】【解答】解:B5=3A,所以AB=15,故A和B成反比例。
故答案为:A。
【分析】若xy=k(k为常数,x,y≠0),那么x和y成反比例关系。
10.【答案】C
【知识点】圆柱的体积(容积)
【解析】【解答】解:圆柱的底面半径和高都扩大到原米的2倍。它的体积扩大到原来的2×2×2=8倍。
故答案为:C。
【分析】圆柱的底面半径扩大几倍,体积就扩大几2倍;圆柱的高扩大几倍,体积就扩大几倍。
11.【答案】83;24
【知识点】比例的基本性质
【解析】【解答】解:72×59=40,40÷15=83,所以72:83=15:59;
8×0.6=4.8,4.8÷0.2=24,所以0.2:8=0.6:24。
故答案为:83;24。
【分析】在比例中,两个外项的积等于两个内项的积,据此作答即可。
12.【答案】5;2
【知识点】比例的基本性质
【解析】【解答】解:a:b=5:2。
故答案为:5;2。
【分析】在比例中,两个外项的积等于两个内项的积,据此作答即可。
13.【答案】7;30
【知识点】整点时间与钟面指针的指向
【解析】【解答】解:90°÷30°=3大格,4+3=7时,所以时针从4时绕中心点顺时针旋转90°后是7时;从4时到5时走了1大格,那么时针旋转了30°。
故答案为:7;30。
【分析】时针顺时针旋转90°,也就是走了90°÷30°=3大格,也就是走了3时,所以时针从4时绕中心点顺时针旋转90°后是7时;从4时到5时走了1大格,时针走1大格走了1时,那么时针旋转了30°。
14.【答案】4.18
【知识点】圆柱与圆锥体积的关系
【解析】【解答】解:16.72÷(3+1)=4.18dm3,所以圆锥的体积是4.18m3。
故答案为:4.18。
【分析】等底等高圆柱的体积是圆锥体积的3倍,那么合起来是4倍圆锥的体积,所以圆锥的体积=圆柱和圆锥的体积和÷(3+1)。
15.【答案】2.5
【知识点】比例的基本性质
【解析】【解答】解:1÷0.4=2.5
故答案为:2.5。
【分析】两个内项互为倒数,两个内项的积是1,根据比例的基本性质可知,两个外项的积也是1;由此用1除以一个外项即可求出另一个外项。
16.【答案】54
【知识点】圆柱与圆锥体积的关系
【解析】【解答】解:18×3=54cm,所以圆锥的高是54cm。
故答案为:54。
【分析】V柱=S柱h柱,V锥=S锥h锥×13,当S柱=S锥,V柱=V锥时,h柱=h锥×13。
17.【答案】80km;1:8000000;7
【知识点】比例尺的认识;应用比例尺求图上距离或实际距离
【解析】【解答】解:线段比例尺表示图上1cm相当于实际距离80km;80km=8000000cm,所以转化成数值比例尺是1:8000000。如果AB两地相距560千米,560千米=56000000厘米,56000000×18000000=7厘米,所以地图上相距7厘米。
故答案为:80km;1:8000000;7。
【分析】比例尺=图上距离:实际距离,其中比例尺中的前项和后项的单位要一致;
AB两地的图上距离=AB两地的实际距离÷比例尺,这里需要把AB两地的实际距离的单位进行换算,即1千米=100000厘米。
18.【答案】旋转;平移;轴对称
【知识点】轴对称;平移与平移现象;旋转与旋转现象
【解析】【解答】解:推门是旋转现象,缆车运动是平移现象,剪中国结是轴对称现象。
故答案为:旋转;平移;轴对称。
【分析】旋转现象是图形或物体围绕某一点或轴进行圆周运动;
平移是指同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动;
轴对称是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
19.【答案】1.5
【知识点】圆锥的体积(容积)
【解析】【解答】解:56.52÷13÷(62×3.14)=169.56÷113.04=1.5dm,所以圆锥的高是1.5dm。
故答案为:1.5。
【分析】圆锥的高=铁块的体积÷13÷(圆锥的底面半径2×π),据此作答即可。
20.【答案】840
【知识点】应用比例尺求图上距离或实际距离
【解析】【解答】解:24÷11000=24000厘米=240米,18÷11000=18000厘米=180米,(240+180)×2=840米,所以这个长方形实际的周长是840m。
故答案为:840。
【分析】长方形实际的长=长方形图上的长÷比例尺,长方形实际的宽=长方形图上的宽÷比例尺,然后进行单位换算,即1米=100厘米,那么这个长方形实际的周长=(实际的长+实际的宽)×2。
21.【答案】(1)正比例
(2)不成比例
(3)反比例
【知识点】成正比例的量及其意义;成反比例的量及其意义
【解析】【解答】解:(1)长方形的面积=长×宽,所以长方形的长一定,长方形的面积和宽成正比例关系;
(2)人的身高和跳的高度不成比例;
(3)圆柱的侧面积=底面周长×高,所以圆柱的侧面积一定,圆柱的底面周长和高长反比例关系。
故答案为:(1)正比例;(2)不成比例;(3)反比例。
【分析】若y=kx(k为常数,x,y≠0),那么x和y成正比例关系;
若xy=k(k为常数,x,y≠0),那么x和y成反比例关系。
22.【答案】57 ÷ 38 = 4021 49 + 23 = 109 2.8÷70%=4 25×0.4×5=50
6- 710 = 5310 811 × 3332 = 34 3.14×52=78.5 0.3×0.2÷0.3×0.2=0.04
【知识点】小数的四则混合运算;分数与分数相乘;除数是分数的分数除法
【解析】【分析】除以一个不为0的数,等于乘这个数的倒数;
分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要约分。
23.【答案】(1)解: 0.75x=43×1.8
0.75x÷0.75=2.4÷0.75
x=3.2
(2)解: 25x=87×72
25x÷25=4÷25
x=10
(3)解:9x=4.5×6
9x÷9=27÷9
x=3
【知识点】应用比例的基本性质解比例
【解析】【分析】解比例时,可以用到比例的基本性质,即两个外项的积等于两个内项的积,把含有x的项放在等号的左边,把常数项放在等号的右边,然后等号两边同时除以x前面的项,就可以解得x的值。
24.【答案】解:12÷2=6(厘米)
62×3.14=113.04(平方厘米)
12×3.14×16
=37.68×16
=602.88(平方厘米)
602.88+113.04×2
=602.88+226.08
=828.96(平方厘米)
答:图形的表面积是828.96平方厘米。
【知识点】圆柱的侧面积、表面积
【解析】【分析】圆柱的底面半径=圆柱的底面直径÷2,所以圆柱的底面积=πr2,圆柱的侧面积=πdh,所以圆柱的表面积=底面积×2+侧面积。
25.【答案】解:4÷2=2(dm)
3.14×22=12.56(dm2)
V锥:12.56×3× 13 =12.56(dm3)
V柱:12.56×5=62.8(dm3)
62.8+12.56=75.36(dm3)
答:图形的体积是75.36dm3。
【知识点】圆柱的体积(容积);圆锥的体积(容积)
【解析】【分析】从图中可以看出,这个图形的体积=圆柱的体积+圆锥的体积,其中圆柱的体积=πr2h,圆锥的体积=πr2h×13。
26.【答案】(1)
(2)
(3)
【知识点】补全轴对称图形;作平移后的图形;作旋转后的图形
【解析】【分析】(1)作轴对称图形,先过已知图形的关键点作对称轴的垂线,然后数出关键点到对称轴的格子数,并在对称轴另一边相同格子数的位置左上标记,最后把这些标记连接起来即可;
(2)绕图形上一点顺时针旋转一定的度数,先把这个点连接的边顺时针旋转相同的度数,然后把剩下的边连接起来即可;
(3)作平移后的图形,先把这个图形的关键点向右平移相同的格子数,然后把这些关键点连接起来即可。
27.【答案】(1)2;2
(2)600;1:60000
(3)1200
(4)解:
【知识点】根据方向和距离确定物体的位置;应用比例尺求图上距离或实际距离
【解析】【解答】解:(1)学校到汽车站的图上距离是2cm,学校到公园的图上距离是2cm;
(2)1200÷2=600m,所以图上1cm表示实际距离是600m;600m=60000cm,所以这个示意图的比例尺是1:60000;
(3)2÷160000=120000cm=1200m,所以学校到公园的实际距离是1200m;
(4)。
【分析】(1)用尺子两处长度,然后将长度取整即可;
(2)学校到汽车站的图上距离是2厘米,1200÷2=600m,所以图上1cm表示实际距离是1m;这个示意图的比例尺=图上距离:实际距离;
(3)学校到公园的实际距离=图上距离÷比例尺,然后进行单位换算;
(4)根据方位图和各个地点的位置作答即可。
28.【答案】解:24×50×3.14
=1200×3.14
=3768(平方厘米)
=0.3768(平方米)
0.3768×100=37.68(平方米)
答:做100根这样的通风管至少需要37.68平方米铁皮。
【知识点】圆柱的侧面积、表面积
【解析】【分析】1根这样的通风管需要铁皮的面积=铁皮管的底面直径×π×长,所以100根这样的通风管需要铁皮的面积=1根这样的通风管需要铁皮的面积×100,据此代入数值作答即可。
29.【答案】解:设汽车的长是x厘米。
1:30=15:x
x=30×15
x=450
450÷100=4.5(米)
答:汽车的长是4.5米。
【知识点】应用比例解决实际问题
【解析】【分析】本题可以设汽车的长是x厘米,题中存在的比例关系是:汽车的模型与实际长度的比=汽车模型的长:汽车实际的长,然后进行单位换算即可。
30.【答案】解:3.6÷ 13000000 =3.6×3000000=10800000(cm)
10800000cm=108km
108÷90=1.2(小时)
答:1.2小时可以到达。
【知识点】应用比例尺求图上距离或实际距离
【解析】【分析】甲乙两地的实际距离=甲乙两地的图上距离÷比例尺,然后进行单位换算,即1千米=100000厘米,那么这辆汽车从甲地到乙地用的时间=甲乙两地的实际距离÷这辆汽车的速度,据此代入数值作答即可。
31.【答案】解:12.56÷3.14÷2=2(米)
3.14×22×9×13=37.68(立方米)
3厘米=0.03米
37.68÷(0.03×20)=62.8(米)
答:能铺62.8米。
【知识点】长方体的体积;圆锥的体积(容积)
【解析】【分析】沙堆的底面半径=底面周长÷π÷2,所以沙堆的体积=πr2h×13,然后把单位统一,即1m=100cm,那么能铺的长度=沙堆的体积÷(公路的长×公路的宽),据此代入数值作答即可。
32.【答案】(1)解:6÷2=3(m)
①S侧:3.14×6×2×1.2=22.608(m2)
②S底:3.14×32=28.26(m2)
③S表:28.26+22.608=50.868(m2)
答:镶瓷砖的面积是50.868平方米。
(2)解:6÷2=3(m)
3.14×32×1.2=33.912(m3)
33.912m3=33912(升)
答:这个水池最多能装水33912升。
【知识点】圆柱的侧面积、表面积;圆柱的体积(容积)
【解析】【分析】(1)水池的底面半径=底面直径÷2,那么水池的侧面积=底面周长×π×高,水池的底面积=πr2,所以镶瓷砖的面积=侧面积+底面积;
(2)这个水池最多能装水的体积=πr2h,然后进行单位换算,即1m3=1000L。
相关试卷
这是一份2023年广东省惠州市惠阳区小升初数学试卷,共4页。试卷主要包含了选择,填空,计算,画一画,解决实际问题等内容,欢迎下载使用。
这是一份广东省惠州市惠阳区2021-2022学年一年级下学期数学期中试卷,共10页。试卷主要包含了填空题,直接写得数,选择题,操作题,看图列式,数一数,填一填,解决问题等内容,欢迎下载使用。
这是一份广东省惠州市惠阳区2021-2022学年四年级下学期数学期中试卷,共12页。试卷主要包含了填空,判断题,选择题,计算,操作与实践,解决问题等内容,欢迎下载使用。