|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年中考数学复习热搜题速递之图形的对称
    立即下载
    加入资料篮
    2024年中考数学复习热搜题速递之图形的对称01
    2024年中考数学复习热搜题速递之图形的对称02
    2024年中考数学复习热搜题速递之图形的对称03
    还剩33页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学复习热搜题速递之图形的对称

    展开
    这是一份2024年中考数学复习热搜题速递之图形的对称,共36页。

    2024年中考数学复习热搜题速递之图形的对称(2023年7月)
    一.选择题(共10小题)
    1.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是(  )

    A.25° B.30° C.35° D.40°
    2.(2022秋•东湖区校级期末)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(  )

    A.6 B.8 C.10 D.12
    3.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为(  )

    A.50° B.60° C.70° D.80°
    4.(2020•河南模拟)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为(  )

    A.140° B.100° C.50° D.40°
    5.(2017•天津)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是(  )

    A.BC B.CE C.AD D.AC
    6.(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为(  )

    A.29 B.34 C.52 D.41
    7.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(  )

    A.125 B.4 C.245 D.5
    8.(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于(  )

    A.2 B.54 C.53 D.75
    9.(2019•重庆)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为(  )

    A.332 B.3217 C.7 D.13
    10.(2021秋•洛阳期末)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有(  )

    A.3个 B.4个 C.5个 D.6个
    二.填空题(共5小题)
    11.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是   .

    12.(2013•河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为    .

    13.(2015•河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为   .

    14.(2014•河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为   .

    15.(2019•天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为    .

    三.解答题(共5小题)
    16.(2017•新城区校级模拟)(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
    (2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
    (3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.

    17.(2020秋•平舆县期末)如图,在△ABC中,∠ABC=45°,点P为边BC上的一点,BC=3BP,且∠PAB=15°,点C关于直线PA的对称点为D,连接BD,又△APC的PC边上的高为AH
    (1)求∠BPD的大小;
    (2)判断直线BD,AH是否平行?并说明理由;
    (3)证明:∠BAP=∠CAH.

    18.(2021秋•南昌期末)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)
    (1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
    (2)写出点A′,B′,C′的坐标.

    19.(2022•江岸区模拟)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).
    (1)在平面直角坐标系中画出△ABC,则△ABC的面积是   ;
    (2)若点D与点C关于y轴对称,则点D的坐标为   ;
    (3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.

    20.(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,AC=12AB,求证:∠B=30°,请你完成证明过程.
    (2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的折痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.
    (3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.


    2024年中考数学复习热搜题速递之图形的对称(2023年7月)
    参考答案与试题解析
    一.选择题(共10小题)
    1.(2015•营口)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是(  )

    A.25° B.30° C.35° D.40°
    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【专题】压轴题.
    【答案】B
    【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=12∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.
    【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,
    分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:
    ∵点P关于OA的对称点为D,关于OB的对称点为C,
    ∴PM=DM,OP=OD,∠DOA=∠POA;
    ∵点P关于OB的对称点为C,
    ∴PN=CN,OP=OC,∠COB=∠POB,
    ∴OC=OP=OD,∠AOB=12∠COD,
    ∵△PMN周长的最小值是5cm,
    ∴PM+PN+MN=5,
    ∴DM+CN+MN=5,
    即CD=5=OP,
    ∴OC=OD=CD,
    即△OCD是等边三角形,
    ∴∠COD=60°,
    ∴∠AOB=30°;
    故选:B.

    【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.
    2.(2022秋•东湖区校级期末)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为(  )

    A.6 B.8 C.10 D.12
    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【答案】C
    【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【解答】解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=CM+MD+CD=AD+12BC=8+12×4=8+2=10.
    故选:C.

    【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    3.(2015•遵义)如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为(  )

    A.50° B.60° C.70° D.80°
    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【专题】压轴题.
    【答案】D
    【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.
    【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,

    ∵∠C=50°,
    ∴∠DAB=130°,
    ∴∠HAA′=50°,
    ∴∠AA′E+∠A″=∠HAA′=50°,
    ∵∠EA′A=∠EAA′,∠FAD=∠A″,
    ∴∠EAA′+∠A″AF=50°,
    ∴∠EAF=130°﹣50°=80°,
    故选:D.
    【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.
    4.(2020•河南模拟)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为(  )

    A.140° B.100° C.50° D.40°
    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【专题】平移、旋转与对称.
    【答案】B
    【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.
    【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则
    OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,
    根据轴对称的性质,可得MP=P1M,PN=P2N,则
    △PMN的周长的最小值=P1P2,
    ∴∠P1OP2=2∠AOB=80°,
    ∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,
    ∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,
    故选:B.

    【点评】本题考查了轴对称﹣最短路线问题,正确正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=100°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
    5.(2017•天津)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是(  )

    A.BC B.CE C.AD D.AC
    【考点】轴对称﹣最短路线问题;等腰三角形的性质.菁优网版权所有
    【答案】B
    【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.
    【解答】解:如图连接PC,

    ∵AB=AC,BD=CD,
    ∴AD⊥BC,
    ∴PB=PC,
    ∴PB+PE=PC+PE,
    ∵PE+PC≥CE,
    ∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,
    故选:B.
    【点评】本题考查轴对称﹣最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    6.(2017•安徽)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为(  )

    A.29 B.34 C.52 D.41
    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【专题】空间观念;几何直观;模型思想.
    【答案】D
    【分析】首先由S△PAB=13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
    【解答】解:设△ABP中AB边上的高是h.
    ∵S△PAB=13S矩形ABCD,
    ∴12AB•h=13AB•AD,
    ∴h=23AD=2,
    ∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
    在Rt△ABE中,∵AB=5,AE=2+2=4,
    ∴BE=AB2+AE2=52+42=41,
    即PA+PB的最小值为41.
    故选:D.

    【点评】本题考查了轴对称﹣最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
    7.(2014•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(  )

    A.125 B.4 C.245 D.5
    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【答案】C
    【分析】过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=12AB•CM=12AC•BC,得出CM的值,即PC+PQ的最小值.
    【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,
    ∵AD是∠BAC的平分线.
    ∴PQ=PM,这时PC+PQ有最小值,即CM的长度,
    ∵AC=6,BC=8,∠ACB=90°,
    ∴AB=AC2+BC2=62+82=10.
    ∵S△ABC=12AB•CM=12AC•BC,
    ∴CM=AC⋅BCAB=6×810=245,
    即PC+PQ的最小值为245.
    故选:C.

    【点评】本题主要考查了轴对称问题,解题的关键是找出满足PC+PQ有最小值时点P和Q的位置.
    8.(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于(  )

    A.2 B.54 C.53 D.75
    【考点】翻折变换(折叠问题);直角三角形斜边上的中线;勾股定理.菁优网版权所有
    【答案】D
    【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.
    【解答】解:如图连接BE交AD于O,作AH⊥BC于H.
    在Rt△ABC中,∵AC=4,AB=3,
    ∴BC=32+42=5,
    ∵CD=DB,
    ∴ED=DC=DB=52,
    ∵12•BC•AH=12•AB•AC,
    ∴AH=125,
    ∵AE=AB,
    ∴点A在BE的垂直平分线上.
    ∵DE=DB=DC,
    ∴点D在BE的垂直平分线上,△BCE是直角三角形,
    ∴AD垂直平分线段BE,
    ∵12•AD•BO=12•BD•AH,
    ∴OB=125,
    ∴BE=2OB=245,
    在Rt△BCE中,EC=BC2-BE2=52-(245)2=75,
    解法二:连接BE,AD于点F,DF是三角形BCE中位线,求出DF,可得结论.

    故选:D.

    【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.
    9.(2019•重庆)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为(  )

    A.332 B.3217 C.7 D.13
    【考点】翻折变换(折叠问题).菁优网版权所有
    【专题】平移、旋转与对称.
    【答案】B
    【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=3DM=3,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.
    【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,
    ∵AD=AC′=2,D是AC边上的中点,
    ∴DC=AD=2,
    由翻折知,△BDC≌△BDC',BD垂直平分CC',
    ∴DC=DC'=2,BC=BC',CM=C'M,
    ∴AD=AC′=DC'=2,
    ∴△ADC'为等边三角形,
    ∴∠ADC'=∠AC'D=∠C'AC=60°,
    ∵DC=DC',
    ∴∠DCC'=∠DC'C=12×60°=30°,
    在Rt△C'DM中,
    ∠DC'C=30°,DC'=2,
    ∴DM=1,C'M=3DM=3,
    ∴BM=BD﹣DM=3﹣1=2,
    在Rt△BMC'中,
    BC'=BM2+C'M2=22+(3)2=7,
    ∵S△BDC'=12BC'•DH=12BD•CM,
    ∴7DH=3×3,
    ∴DH=3217,
    故选:B.

    【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.
    10.(2021秋•洛阳期末)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有(  )

    A.3个 B.4个 C.5个 D.6个
    【考点】轴对称的性质.菁优网版权所有
    【专题】网格型.
    【答案】C
    【分析】解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.
    【解答】解:与△ABC成轴对称且以格点为顶点三角形有△ABG、△CDF、△AEF、△DBH,△BCG共5个,
    故选:C.

    【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.
    二.填空题(共5小题)
    11.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是 10 .

    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.
    【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,
    连接M′N′,即为MP+PQ+QN的最小值.
    根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
    ∴△ONN′为等边三角形,△OMM′为等边三角形,
    ∴∠N′OM′=90°,
    ∴在Rt△M′ON′中,
    M′N′=32+12=10.
    故答案为10.

    【点评】本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.
    12.(2013•河南)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为  32或3 .

    【考点】翻折变换(折叠问题).菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】当△CEB′为直角三角形时,有两种情况:
    ①当点B′落在矩形内部时,如答图1所示.
    连接AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.
    ②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
    【解答】解:当△CEB′为直角三角形时,有两种情况:

    ①当点B′落在矩形内部时,如答图1所示.
    连接AC,
    在Rt△ABC中,AB=3,BC=4,
    ∴AC=42+32=5,
    ∵∠B沿AE折叠,使点B落在点B′处,
    ∴∠AB′E=∠B=90°,
    当△CEB′为直角三角形时,只能得到∠EB′C=90°,
    ∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
    ∴EB=EB′,AB=AB′=3,
    ∴CB′=5﹣3=2,
    设BE=x,则EB′=x,CE=4﹣x,
    在Rt△CEB′中,
    ∵EB′2+CB′2=CE2,
    ∴x2+22=(4﹣x)2,解得x=32,
    ∴BE=32;
    ②当点B′落在AD边上时,如答图2所示.
    此时ABEB′为正方形,∴BE=AB=3.
    综上所述,BE的长为32或3.
    故答案为:32或3.
    【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
    13.(2015•河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为 16或45 .

    【考点】翻折变换(折叠问题).菁优网版权所有
    【专题】压轴题;分类讨论.
    【答案】见试题解答内容
    【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.
    【解答】解:(i)当B′D=B′C时,
    过B′点作GH∥AD,则∠B′GE=90°,
    当B′C=B′D时,AG=DH=12DC=8,
    由AE=3,AB=16,得BE=13.
    由翻折的性质,得B′E=BE=13.
    ∴EG=AG﹣AE=8﹣3=5,
    ∴B′G=B'E2-EG2=132-52=12,
    ∴B′H=GH﹣B′G=16﹣12=4,
    ∴DB′=B'H2+DH2=42+82=45
    (ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).
    (iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.
    综上所述,DB′的长为16或45.
    故答案为:16或45.


    【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.
    14.(2014•河南)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为 52或53 .

    【考点】翻折变换(折叠问题).菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.
    【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P

    ∵点D的对应点D′落在∠ABC的角平分线上,
    ∴MD′=PD′,
    设MD′=x,则PD′=BM=x,
    ∴AM=AB﹣BM=7﹣x,
    又折叠图形可得AD=AD′=5,
    ∴x2+(7﹣x)2=25,解得x=3或4,
    即MD′=3或4.
    在Rt△END′中,设ED′=a,
    ①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,
    ∴a2=22+(4﹣a)2,
    解得a=52,即DE=52,
    ②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,
    ∴a2=12+(3﹣a)2,
    解得a=53,即DE=53.
    故答案为:52或53.
    【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.
    15.(2019•天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为  4913 .

    【考点】翻折变换(折叠问题);正方形的性质.菁优网版权所有
    【专题】矩形 菱形 正方形;平移、旋转与对称.
    【答案】见试题解答内容
    【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ABF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.
    【解答】解:∵四边形ABCD为正方形,
    ∴AB=AD=12,∠BAD=∠D=90°,
    由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,
    ∴BF⊥AE,AH=GH,
    ∴∠BAH+∠ABH=90°,
    又∵∠FAH+∠BAH=90°,
    ∴∠ABH=∠FAH,
    ∴△ABF≌△DAE(ASA),
    ∴AF=DE=5,
    在Rt△ABF中,
    BF=AB2+AF2=122+52=13,
    S△ABF=12AB•AF=12BF•AH,
    ∴12×5=13AH,
    ∴AH=6013,
    ∴AG=2AH=12013,
    ∵AE=BF=13,
    ∴GE=AE﹣AG=13-12013=4913,
    故答案为:4913.

    【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.
    三.解答题(共5小题)
    16.(2017•新城区校级模拟)(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
    (2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
    (3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.

    【考点】轴对称﹣最短路线问题.菁优网版权所有
    【答案】见试题解答内容
    【分析】(1)由于△PCD的周长=PC+CD+PD,而CD是定值,故只需在直线AB上找一点P,使PC+PD最小.如果设C关于直线AB的对称点为C′,使PC+PD最小就是使PC′+PD最小;
    (2)作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F.此时△PEF周长有最小值;
    (3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,此时使得E、F、M、N,四点组成的四边形的周长最短.
    【解答】解:(1)如图1,作C关于直线AB的对称点C′,
    连接C′D交AB于点P.
    则点P就是所要求作的点.
    理由:在AB上取不同于P的点P′,连接CP′、DP′、C'P'.
    ∵C和C′关于直线l对称,
    ∴PC=PC′,P′C=P′C′,
    而C′P+DP<C′P′+DP′,
    ∴PC+DP<CP′+DP′
    ∴CD+CP+DP<CD+CP′+DP′
    即△CDP周长小于△CDP′周长;
    (2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,连接PC,PD,则点E,F就是所要求作的点,
    理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P、PF′、DF′,E'F',
    ∵C和P关于直线OA对称,D和P关于直线OB对称,
    ∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,
    ∴PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DF′,
    ∵CE+EF+DF<CE′+E′F′+DF′,
    ∴PE+EF+PF<PE′+E′F′+PF′;
    (3)如图3,作M关于OA的对称点C,作N关于OB的对称点D,连接CD,交OA于E,OB于F,则点E,F就是所要求作的点.连接MC,ND.
    理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′F′,DF′,
    ∵C和M关于直线OA对称,
    ∴ME=CE,CE′=ME′,NF=DF,NF′=DF′,
    由(2)得知MN+ME+EF+NF<MN+ME′+E′F′+F′N.



    【点评】此题主要考查了平面内最短路线问题求法以及垂直平分线的性质等知识,根据已知得出对称点的位置是解题关键.
    17.(2020秋•平舆县期末)如图,在△ABC中,∠ABC=45°,点P为边BC上的一点,BC=3BP,且∠PAB=15°,点C关于直线PA的对称点为D,连接BD,又△APC的PC边上的高为AH
    (1)求∠BPD的大小;
    (2)判断直线BD,AH是否平行?并说明理由;
    (3)证明:∠BAP=∠CAH.

    【考点】轴对称的性质;平行线的判定与性质.菁优网版权所有
    【专题】平移、旋转与对称.
    【答案】见试题解答内容
    【分析】(1)根据点C关于直线PA的对称点为D,即可得到△ADP≌△ACP,进而得出∠APC=∠APD=60°,即可得到∠BPD=180°﹣120°=60°;
    (2)先取PD中点E,连接BE,则△BEP为等边三角形,△BDE为等腰三角形,进而得到∠DBP=90°,即BD⊥BC.再根据△APC的PC边上的高为AH,可得AH⊥BC,进而得出BD∥AH;
    (3)过点A作BD、DP的垂线,垂足分别为G、F.根据∠GBA=∠CBA=45°,可得点A在∠GBC的平分线上,进而得到点A在∠GDP的平分线上.再根据∠GDP=150°,即可得到∠C=∠ADP=75°,进而得到Rt△ACH中,∠CAH=15°,即可得出∠BAP=∠CAH.
    【解答】解:(1)∵∠PAB=15°,∠ABC=45°,
    ∴∠APC=15°+45°=60°,
    ∵点C关于直线PA的对称点为D,
    ∴PD=PC,AD=AC,
    ∴△ADP≌△ACP,
    ∴∠APC=∠APD=60°,
    ∴∠BPD=180°﹣120°=60°;

    (2)直线BD,AH平行.理由:
    ∵BC=3BP,
    ∴BP=12PC=12PD,
    如图,取PD中点E,连接BE,则△BEP为等边三角形,△BDE为等腰三角形,

    ∴∠BEP=60°,
    ∴∠BDE=12∠BEP=30°,
    ∴∠DBP=90°,即BD⊥BC.
    又∵△APC的PC边上的高为AH,
    ∴AH⊥BC,
    ∴BD∥AH;

    (3)如图,过点A作BD、DP的垂线,垂足分别为G、F.

    ∵∠APC=∠APD,即点A在∠DPC的平分线上,
    ∴AH=AF.
    ∵∠CBD=90°,∠ABC=45°,
    ∴∠GBA=∠CBA=45°,
    即点A在∠GBC的平分线上,
    ∴AG=AH,
    ∴AG=AF,
    ∴点A在∠GDP的平分线上.
    又∵∠BDP=30°,
    ∴∠GDP=150°,
    ∴∠ADP=12×150°=75°,
    ∴∠C=∠ADP=75°,
    ∴Rt△ACH中,∠CAH=15°,
    ∴∠BAP=∠CAH.
    【点评】本题主要考查了等边三角形的性质与判定、全等三角形的性质与判定及轴对称的性质的运用,解题的关键是利用角平分线的性质与判定构造全等三角形,然后利用全等三角形的性质即可解决问题.
    18.(2021秋•南昌期末)如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)
    (1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
    (2)写出点A′,B′,C′的坐标.

    【考点】坐标与图形变化﹣对称.菁优网版权所有
    【专题】数形结合.
    【答案】见试题解答内容
    【分析】(1)根据关于x轴对称的点的坐标特征得到点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1),然后描点;
    (2)由(1)可得到三个对应点的坐标.
    【解答】解:(1)如图,
    (2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).

    【点评】本题考查了关坐标与图形﹣对称:关于x轴对称:横坐标相等,纵坐标互为相反数;关于y轴对称:纵坐标相等,横坐标互为相反数.
    19.(2022•江岸区模拟)如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C(4,3).
    (1)在平面直角坐标系中画出△ABC,则△ABC的面积是 4 ;
    (2)若点D与点C关于y轴对称,则点D的坐标为 (﹣4,3) ;
    (3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.

    【考点】关于x轴、y轴对称的点的坐标.菁优网版权所有
    【专题】三角形;平移、旋转与对称.
    【答案】见试题解答内容
    【分析】(1)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;
    (2)利用关于y轴对称点的性质得出答案;
    (3)利用三角形面积求法得出符合题意的答案.
    【解答】解:(1)如图所示:△ABC的面积是:3×4-12×1×2-12×2×4-12×2×3=4;
    故答案为:4;

    (2)点D与点C关于y轴对称,则点D的坐标为:(﹣4,3);
    故答案为:(﹣4,3);

    (3)∵P为x轴上一点,△ABP的面积为4,
    ∴BP=8,
    ∴点P的横坐标为:2+8=10或2﹣8=﹣6,
    故P点坐标为:(10,0)或(﹣6,0).

    【点评】此题主要考查了三角形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.
    20.(2016•贵阳模拟)(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,AC=12AB,求证:∠B=30°,请你完成证明过程.
    (2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的折痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.
    (3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.

    【考点】翻折变换(折叠问题).菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】(1)Rt△ABC中,根据sinB=ACAB=12,即可证明∠B=30°;
    (2)求出∠FA′D的度数,利用翻折变换的性质可求出∠ADG的度数,在Rt△A'FD中求出A'F,得出A'E,在Rt△A'EG中可求出A'G,利用翻折变换的性质可得出AG的长度.
    (3)先判断出AD=12AC,得出∠ACD=30°,∠DAC=60°,从而求出AD的长度,根据翻折变换的性质可得出∠DAF=∠FAO=30°,在Rt△ADF中求出DF,继而得出FO,同理可求出EO,再由EF=EO+FO,即可得出答案.
    【解答】(1)证明:Rt△ABC中,∠C=90°,AC=12AB,
    ∵sinB=ACAB=12,
    ∴∠B=30°;

    (2)解:∵正方形边长为2,E、F为AB、CD的中点,
    ∴EA=FD=12×边长=1,
    ∵沿过点D的折痕将纸片翻折,使点A落在EF上的点A′处,
    ∴A′D=AD=2,
    ∴FDA'D=12,
    ∴∠FA′D=30°,
    可得∠FDA′=90°﹣30°=60°,
    ∵A沿GD折叠落在A′处,
    ∴∠ADG=∠A′DG,AG=A′G,
    ∴∠ADG=∠ADA'2=90°-60°2=15°,
    ∵A′D=2,FD=1,
    ∴A′F=A'D2-FD2=3,
    ∴EA′=EF﹣A′F=2-3,
    ∵∠EA′G+∠DA′F=180°﹣∠GA′D=90°,
    ∴∠EA′G=90°﹣∠DA′F=90°﹣30°=60°,
    ∴∠EGA′=90°﹣∠EA′G=90°﹣60°=30°,
    则A′G=AG=2EA′=2(2-3);

    (3)解:∵折叠后B、D两点恰好重合于一点O,
    ∴AO=AD=CB=CO,
    ∴DA=AC2,
    ∵∠D=90°,
    ∴∠DCA=30°,
    ∵AB=CD=6,
    在Rt△ACD中,ADDC=tan30°,
    则AD=DC•tan30°=6×33=23,
    ∵∠DAF=∠FAO=12∠DAO=90°-∠DCA2=30°,
    ∴DFAD=tan30°=33,
    ∴DF=33AD=2,
    ∴DF=FO=2,
    同理EO=2,
    ∴EF=EO+FO=4.
    【点评】本题考查了翻折变换的知识,涉及了含30°角的直角三角形的性质、平行四边形的性质,综合考查的知识点较多,注意将所学知识融会贯通.

    考点卡片
    1.平行线的判定与性质
    (1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
    (2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
    (3)平行线的判定与性质的联系与区别
    区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.
    联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
    (4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.
    2.等腰三角形的性质
    (1)等腰三角形的概念
    有两条边相等的三角形叫做等腰三角形.
    (2)等腰三角形的性质
    ①等腰三角形的两腰相等
    ②等腰三角形的两个底角相等.【简称:等边对等角】
    ③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】
    (3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
    3.直角三角形斜边上的中线
    (1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)
    (2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
    该定理可以用来判定直角三角形.
    4.勾股定理
    (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    (2)勾股定理应用的前提条件是在直角三角形中.
    (3)勾股定理公式a2+b2=c2 的变形有:a=c2-b2,b=c2-a2及c=a2+b2.
    (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
    5.正方形的性质
    (1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
    (2)正方形的性质
    ①正方形的四条边都相等,四个角都是直角;
    ②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
    ③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
    ④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
    6.轴对称的性质
    (1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.
    由轴对称的性质得到一下结论:
    ①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;
    ②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.
    (2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.
    7.关于x轴、y轴对称的点的坐标
    (1)关于x轴的对称点的坐标特点:
    横坐标不变,纵坐标互为相反数.
    即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).
    (2)关于y轴的对称点的坐标特点:
    横坐标互为相反数,纵坐标不变.
    即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).
    8.坐标与图形变化-对称
    (1)关于x轴对称
    横坐标相等,纵坐标互为相反数.
    (2)关于y轴对称
    纵坐标相等,横坐标互为相反数.
    (3)关于直线对称
    ①关于直线x=m对称,P(a,b)⇒P(2m﹣a,b)
    ②关于直线y=n对称,P(a,b)⇒P(a,2n﹣b)
    9.轴对称-最短路线问题
    1、最短路线问题
    在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.

    2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.
    10.翻折变换(折叠问题)
    1、翻折变换(折叠问题)实质上就是轴对称变换.
    2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.
    首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
    相关试卷

    2024年中考数学复习热搜题速递之图形的对称(2023年7月): 这是一份2024年中考数学复习热搜题速递之图形的对称(2023年7月),共37页。

    2024年中考数学复习热搜题速递之圆: 这是一份2024年中考数学复习热搜题速递之圆,共37页。

    2024年中考数学复习热搜题速递之图形的旋转: 这是一份2024年中考数学复习热搜题速递之图形的旋转,共38页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年中考数学复习热搜题速递之图形的对称
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map