年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年中考数学复习热搜题速递之图形的旋转

    2024年中考数学复习热搜题速递之图形的旋转第1页
    2024年中考数学复习热搜题速递之图形的旋转第2页
    2024年中考数学复习热搜题速递之图形的旋转第3页
    还剩35页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学复习热搜题速递之图形的旋转

    展开

    这是一份2024年中考数学复习热搜题速递之图形的旋转,共38页。
    2024年中考数学复习热搜题速递之图形的旋转(2023年7月)
    一.选择题(共10小题)
    1.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为(  )

    A.2-2 B.32 C.3-1 D.1
    2.(2018•淄博)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为(  )

    A.9+2534 B.9+2532 C.18+253 D.18+2532
    3.(2015•抚顺)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为(  )

    A.3 B.1.5 C.23 D.3
    4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是(  )

    A.34 B.716 C.2-12 D.2-1
    5.(2017•贵港)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是(  )

    A.4 B.3 C.2 D.1
    6.(2015•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是(  )

    A.32° B.64° C.77° D.87°
    7.(2015•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8.(2018•浙江)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(  )

    A.55° B.60° C.65° D.70°
    9.(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是(  )

    A.15° B.20° C.25° D.30°
    10.(2014•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是(  )

    A.70° B.65° C.60° D.55°
    二.填空题(共5小题)
    11.(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是   .

    12.(2015•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为   cm.

    13.(2015•莆田模拟)如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是   .

    14.(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则AK=   .

    15.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为   .

    三.解答题(共5小题)
    16.(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<12∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
    求证:DE′=DE.
    (2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<45°).
    求证:DE2=AD2+EC2.

    17.(2023春•福田区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
    (1)求证:△COD是等边三角形;
    (2)当α=150°时,试判断△AOD的形状,并说明理由;
    (3)探究:当α为多少度时,△AOD是等腰三角形?

    18.(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.
    (1)求证:BE=CF;
    (2)当四边形ACDE为菱形时,求BD的长.

    19.(2022•黄冈模拟)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.
    求:①旋转角的度数   ;
    ②线段OD的长   ;
    ③求∠BDC的度数.
    (2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.

    20.(2017•连云港四模)阅读与理解:
    图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.
    操作与证明:
    (1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;

    (2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
    猜想与发现:
    根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?

    2024年中考数学复习热搜题速递之图形的旋转(2023年7月)
    参考答案与试题解析
    一.选择题(共10小题)
    1.(2014•遵义)如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为(  )

    A.2-2 B.32 C.3-1 D.1
    【考点】旋转的性质.菁优网版权所有
    【答案】C
    【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.
    【解答】解:如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,
    AB=BB'AC'=B'C'BC'=BC',
    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90°,AC=BC=2,
    ∴AB=(2)2+(2)2=2,
    ∴BD=2×32=3,
    C′D=12×2=1,
    ∴BC′=BD﹣C′D=3-1.
    故选:C.

    【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.
    2.(2018•淄博)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为(  )

    A.9+2534 B.9+2532 C.18+253 D.18+2532
    【考点】旋转的性质;等边三角形的性质;勾股定理的逆定理.菁优网版权所有
    【专题】三角形.
    【答案】A
    【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.
    【解答】解:∵△ABC为等边三角形,
    ∴BA=BC,
    可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,

    ∴BE=BP=4,AE=PC=5,∠PBE=60°,
    ∴△BPE为等边三角形,
    ∴PE=PB=4,∠BPE=60°,
    在△AEP中,AE=5,AP=3,PE=4,
    ∴AE2=PE2+PA2,
    ∴△APE为直角三角形,且∠APE=90°,
    ∴∠APB=90°+60°=150°.
    ∴∠APF=30°,
    ∴在直角△APF中,AF=12AP=32,PF=32AP=323.
    ∴在直角△ABF中,AB2=BF2+AF2=(4+323)2+(32)2=25+123.
    则△ABC的面积是34•AB2=34•(25+123)=9+2534.
    故选:A.
    【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
    3.(2015•抚顺)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为(  )

    A.3 B.1.5 C.23 D.3
    【考点】旋转的性质.菁优网版权所有
    【专题】计算题;压轴题.
    【答案】D
    【分析】根据旋转后AC′的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.
    【解答】解:∵旋转后AC′的中点恰好与D点重合,即AD=12AC′=12AC,
    ∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
    ∴∠DAD′=60°,
    ∴∠DAE=30°,
    ∴∠EAC=∠ACD=30°,
    ∴AE=CE,
    在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=33×3=3,
    根据勾股定理得:x2=(3﹣x)2+(3)2,
    解得:x=2,
    ∴EC=2,
    则S△AEC=12EC•AD=3,
    故选:D.
    【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.
    4.(2015•枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是(  )

    A.34 B.716 C.2-12 D.2-1
    【考点】旋转的性质.菁优网版权所有
    【专题】压轴题.
    【答案】D
    【分析】连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.
    【解答】方法一:
    解:连接AC1,
    ∵四边形AB1C1D1是正方形,
    ∴∠C1AB1=12×90°=45°=∠AC1B1,
    ∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,
    ∴∠B1AB=45°,
    ∴∠DAB1=90°﹣45°=45°,
    ∴AC1过D点,即A、D、C1三点共线,
    ∵正方形ABCD的边长是1,
    ∴四边形AB1C1D1的边长是1,
    在Rt△C1D1A中,由勾股定理得:AC1=12+12=2,
    则DC1=2-1,
    ∵∠AC1B1=45°,∠C1DO=90°,
    ∴∠C1OD=45°=∠DC1O,
    ∴DC1=OD=2-1,
    ∴S△ADO=12×OD•AD=2-12,
    ∴四边形AB1OD的面积是=2×2-12=2-1,
    方法二:
    解:∵四边形ABCD是正方形,
    ∴AC=2,∠OCB1=45°,
    ∴CB1=OB1
    ∵AB1=1,
    ∴CB1=OB1=AC﹣AB1=2-1,
    ∴S△OB1C=12•OB1•CB1=12(2-1)2,
    ∵S△ADC=12AD•AC=12×1×1=12,
    ∴S四边形AB1OD=S△ADC﹣S△OB1C=12-12(2-1)2=2-1;
    故选:D.

    【点评】本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,正确的作出辅助线是解题的关键.
    5.(2017•贵港)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是(  )

    A.4 B.3 C.2 D.1
    【考点】旋转的性质.菁优网版权所有
    【答案】B
    【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.
    【解答】解:如图连接PC.
    在Rt△ABC中,∵∠A=30°,BC=2,
    ∴AB=4,
    根据旋转不变性可知,A′B′=AB=4,
    ∴A′P=PB′,
    ∴PC=12A′B′=2,
    ∵CM=BM=1,
    又∵PM≤PC+CM,即PM≤3,
    ∴PM的最大值为3(此时P、C、M共线).
    故选:B.

    【点评】本题考查旋转变换、解直角三角形、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.
    6.(2015•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是(  )

    A.32° B.64° C.77° D.87°
    【考点】旋转的性质.菁优网版权所有
    【答案】C
    【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.
    【解答】解:由旋转的性质可知,AC=AC′,
    ∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.
    ∵∠CC′B′=32°,
    ∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,
    ∵∠B=∠C′B′A,
    ∴∠B=77°,
    故选:C.
    【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.
    7.(2015•贵港)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    【考点】关于原点对称的点的坐标.菁优网版权所有
    【答案】A
    【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.
    【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,
    ∴m=2且m﹣n=﹣3,
    ∴m=2,n=5
    ∴点M(m,n)在第一象限,
    故选:A.
    【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.
    8.(2018•浙江)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(  )

    A.55° B.60° C.65° D.70°
    【考点】旋转的性质.菁优网版权所有
    【专题】几何图形.
    【答案】C
    【分析】根据旋转的性质和三角形内角和解答即可.
    【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.
    ∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
    ∴∠CAD=45°,∠ACD=90°﹣20°=70°,
    ∴∠ADC=180°﹣45°﹣70°=65°,
    故选:C.
    【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
    9.(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是(  )

    A.15° B.20° C.25° D.30°
    【考点】旋转的性质.菁优网版权所有
    【专题】压轴题.
    【答案】C
    【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数.
    【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
    ∴∠AOF=90°+40°=130°,OA=OF,
    ∴∠OFA=(180°﹣130°)÷2=25°.
    故选:C.
    【点评】考查了旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.同时考查了正方形的性质和等腰三角形的性质.
    10.(2014•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是(  )

    A.70° B.65° C.60° D.55°
    【考点】旋转的性质.菁优网版权所有
    【专题】几何图形问题.
    【答案】B
    【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.
    【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    由旋转的性质得∠B=∠A′B′C=65°.
    故选:B.
    【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    二.填空题(共5小题)
    11.(2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是 3+1 .

    【考点】旋转的性质;角平分线的性质;等边三角形的判定与性质;等腰直角三角形.菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】如图,连接AM,由题意得:CA=CM,∠ACM=60°,得到△ACM为等边三角形根据AB=BC,CM=AM,得出BM垂直平分AC,于是求出BO=12AC=1,OM=CM•sin60°=3,最终得到答案BM=BO+OM=1+3.
    【解答】解:如图,连接AM,
    由题意得:CA=CM,∠ACM=60°,
    ∴△ACM为等边三角形,
    ∴AM=CM,∠MAC=∠MCA=∠AMC=60°;
    ∵∠ABC=90°,AB=BC=2,
    ∴AC=2=CM=2,
    ∵AB=BC,CM=AM,
    ∴BM垂直平分AC,
    ∴BO=12AC=1,OM=CM•sin60°=3,
    ∴BM=BO+OM=1+3,
    故答案为:1+3.

    【点评】本题考查了图形的变换﹣旋转,等腰直角三角形的性质,等边三角形的判定和性质,线段的垂直平分线的性质,准确把握旋转的性质是解题的关键.
    12.(2015•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为 42 cm.

    【考点】旋转的性质.菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】根据将△ABC绕点B顺时针旋转60°,得到△BDE,可得△ABC≌△BDE,∠CBD=60°,BD=BC=12cm,从而得到△BCD为等边三角形,得到CD=BC=CD=12cm,在Rt△ACB中,利用勾股定理得到AB=13,所以△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD,即可解答.
    【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,
    ∴△ABC≌△BDE,∠CBD=60°,
    ∴BD=BC=12cm,
    ∴△BCD为等边三角形,
    ∴CD=BC=CD=12cm,
    在Rt△ACB中,AB=AC2+BC2=52+122=13,
    △ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),
    故答案为:42.
    【点评】本题考查了旋转的性质,解决本题的关键是由旋转得到相等的边.
    13.(2015•莆田模拟)如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5 .

    【考点】旋转的性质;等边三角形的性质.菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.
    【解答】解:如图,取AC的中点G,连接EG,
    ∵旋转角为60°,
    ∴∠ECD+∠DCF=60°,
    又∵∠ECD+∠GCE=∠ACB=60°,
    ∴∠DCF=∠GCE,
    ∵AD是等边△ABC的对称轴,
    ∴CD=12BC,
    ∴CD=CG,
    又∵CE旋转到CF,
    ∴CE=CF,
    在△DCF和△GCE中,
    CE=CF∠DCF=∠GCECD=CG,
    ∴△DCF≌△GCE(SAS),
    ∴DF=EG,
    根据垂线段最短,EG⊥AD时,EG最短,即DF最短,
    此时∵∠CAD=12×60°=30°,AG=12AC=12×6=3,
    ∴EG=12AG=12×3=1.5,
    ∴DF=1.5.
    故答案为:1.5.

    【点评】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    14.(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则AK= 23-3 .

    【考点】旋转的性质.菁优网版权所有
    【专题】压轴题.
    【答案】见试题解答内容
    【分析】连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=12∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.
    【解答】解:连接BH,如图所示:

    ∵四边形ABCD和四边形BEFG是正方形,
    ∴∠BAH=∠ABC=∠BEH=∠F=90°,
    由旋转的性质得:AB=EB,∠CBE=30°,
    ∴∠ABE=60°,
    在Rt△ABH和Rt△EBH中,
    BH=BHAB=EB,
    ∴Rt△ABH≌△Rt△EBH(HL),
    ∴∠ABH=∠EBH=12∠ABE=30°,AH=EH,
    ∴∠BHA=∠BHE=60°,
    ∴∠KHF=180°﹣60°﹣60°=60°,
    ∵∠F=90°,∴∠FKH=30°,
    ∴AH=AB•tan∠ABH=3×33=1,
    ∴EH=1,
    ∴FH=3-1,
    在Rt△FKH中,∠FKH=30°,
    ∴KH=2FH=2(3-1),
    ∴AK=KH﹣AH=2(3-1)﹣1=23-3;
    故答案为:23-3.
    解法二:延长AK、BG交于点M,如图所示:

    由题意知,∠ABM=∠MKG=30°,
    ∵正方形ABCD边长为3,
    ∴AB=3,∠BAD=90°,
    ∴∠BAM=90°,
    ∴AM=33AB=1,BM=2AM=2,
    由旋转的性质得:BG=BA=3,∠BGF=∠BAD=90°,
    ∴MG=BM﹣BG=2-3,∠MGK=90°,
    ∴MK=2MG=2(2-3)=4﹣23,
    ∴AK=AM﹣MK=1﹣(4﹣23)=23-3,
    故答案为:23-3.
    【点评】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、三角函数;熟练掌握旋转的性质和正方形的性质,并能进行推理计算是解决问题的关键.
    15.(2019•宿迁)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 52 .

    【考点】旋转的性质;线段的性质:两点之间线段最短;全等三角形的判定与性质;等边三角形的性质;正方形的性质.菁优网版权所有
    【专题】几何动点问题;转化思想;构造法;几何直观.
    【答案】见试题解答内容
    【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.
    【解答】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动

    将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG
    从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上
    作CM⊥HN,则CM即为CG的最小值
    作EP⊥CM,可知四边形HEPM为矩形,
    则CM=MP+CP=HE+12EC=1+32=52

    故答案为52.
    【点评】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.
    三.解答题(共5小题)
    16.(2012•宿迁)(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<12∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,
    求证:DE′=DE.
    (2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<45°).
    求证:DE2=AD2+EC2.

    【考点】旋转的性质;全等三角形的判定与性质;勾股定理.菁优网版权所有
    【专题】压轴题;探究型.
    【答案】见试题解答内容
    【分析】(1)先根据∠DBE=12∠ABC可知∠ABD+∠CBE=∠DBE=12∠ABC,再由图形旋转的性质可知BE=BE′,∠ABE′=∠CBE,故可得出∠DBE′=∠DBE,由全等三角形的性质即可得出△DBE≌△DBE′,故可得出结论;
    (2)把△CBE逆时针旋转90°,由于△ABC是等腰直角三角形,故可知图形旋转后点C与点A重合,∠E′AB=∠BCE=45°,所以∠DAE′=90°,由(1)证DE=DE′,再根据勾股定理即可得出结论.
    【解答】(1)证明:∵∠DBE=12∠ABC,
    ∴∠ABD+∠CBE=∠DBE=12∠ABC,
    ∵△ABE′由△CBE旋转而成,
    ∴BE=BE′,∠ABE′=∠CBE,
    ∴∠DBE′=∠DBE,
    在△DBE与△DBE′中,
    ∵BE=BE'∠DBE=∠DBE'BD=BD,
    ∴△DBE≌△DBE′(SAS),
    ∴DE′=DE;

    (2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,
    ∵BA=BC,∠ABC=90°,
    ∴∠BAC=∠BCE=45°,
    ∴图形旋转后点C与点A重合,CE与AE′重合,
    ∴AE′=EC,
    ∴∠E′AB=∠BCE=45°,
    ∴∠DAE′=90°,
    在Rt△ADE′中,DE′2=AE′2+AD2,
    ∵AE′=EC,
    ∴DE′2=EC2+AD2,
    同(1)可得DE=DE′,
    ∴DE2=AD2+EC2.

    【点评】本题考查的是图形的旋转及勾股定理,熟知旋转前、后的图形全等是解答此题的关键.
    17.(2023春•福田区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
    (1)求证:△COD是等边三角形;
    (2)当α=150°时,试判断△AOD的形状,并说明理由;
    (3)探究:当α为多少度时,△AOD是等腰三角形?

    【考点】旋转的性质;全等三角形的判定与性质;等腰三角形的判定;等边三角形的判定与性质.菁优网版权所有
    【专题】几何综合题.
    【答案】见试题解答内容
    【分析】(1)根据旋转的性质可得出OC=OD,结合题意即可证得结论;
    (2)结合(1)的结论可作出判断;
    (3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.
    【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
    ∴CO=CD,∠OCD=60°,
    ∴△COD是等边三角形.

    (2)解:当α=150°时,△AOD是直角三角形.
    理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,
    ∴△BOC≌△ADC,
    ∴∠ADC=∠BOC=150°,
    又∵△COD是等边三角形,
    ∴∠ODC=60°,
    ∴∠ADO=∠ADC﹣∠ODC=90°,
    ∵∠α=150°,∠AOB=110°,∠COD=60°,
    ∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,
    ∴△AOD不是等腰直角三角形,即△AOD是直角三角形.

    (3)解:①要使AO=AD,需∠AOD=∠ADO,
    ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,
    ∴190°﹣α=α﹣60°,
    ∴α=125°;
    ②要使OA=OD,需∠OAD=∠ADO.
    ∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,
    ∴α﹣60°=50°,
    ∴α=110°;
    ③要使OD=AD,需∠OAD=∠AOD.
    ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,
    ∠OAD=180°-(α-60°)2=120°-α2,
    ∴190°﹣α=120°-α2,
    解得α=140°.
    综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.
    【点评】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.
    18.(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.
    (1)求证:BE=CF;
    (2)当四边形ACDE为菱形时,求BD的长.

    【考点】旋转的性质;勾股定理;菱形的性质.菁优网版权所有
    【专题】计算题;证明题.
    【答案】见试题解答内容
    【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CF;
    (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=2AC=2,于是利用BD=BE﹣DE求解.
    【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
    ∴AE=AB,AF=AC,∠EAF=∠BAC,
    ∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,
    ∵AB=AC,
    ∴AE=AF,
    ∴△AEB可由△AFC绕点A按顺时针方向旋转得到,
    ∴BE=CF;
    (2)解:∵四边形ACDE为菱形,AB=AC=1,
    ∴DE=AE=AC=AB=1,AC∥DE,
    ∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
    ∴∠AEB=∠ABE=45°,
    ∴△ABE为等腰直角三角形,
    ∴BE=2AC=2,
    ∴BD=BE﹣DE=2-1.
    【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.
    19.(2022•黄冈模拟)(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.
    求:①旋转角的度数 60° ;
    ②线段OD的长 4 ;
    ③求∠BDC的度数.
    (2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.

    【考点】旋转的性质;全等三角形的判定与性质.菁优网版权所有
    【专题】计算题.
    【答案】见试题解答内容
    【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;
    ②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;
    ③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;
    (2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=2OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.
    【解答】解:(1)①∵△ABC为等边三角形,
    ∴BA=BC,∠ABC=60°,
    ∵△BAO绕点B顺时针旋转后得到△BCD,
    ∴∠OBD=∠ABC=60°,
    ∴旋转角的度数为60°;
    ②∵△BAO绕点B顺时针旋转后得到△BCD,
    ∴BO=BD,
    而∠OBD=60°,
    ∴△OBD为等边三角形;
    ∴OD=OB=4;
    ③∵△BOD为等边三角形,
    ∴∠BDO=60°,
    ∵△BAO绕点B顺时针旋转后得到△BCD,
    ∴CD=AO=3,
    在△OCD中,CD=3,OD=4,OC=5,
    ∵32+42=52,
    ∴CD2+OD2=OC2,
    ∴△OCD为直角三角形,∠ODC=90°,
    ∴∠BDC=∠BDO+∠ODC=60°+90°=150°;
    (2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:
    ∵△BAO绕点B顺时针旋转后得到△BCD,
    ∴∠OBD=∠ABC=90°,BO=BD,CD=AO,
    ∴△OBD为等腰直角三角形,
    ∴OD=2OB,
    ∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,
    ∴OA2+2OB2=OC2,
    ∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.

    【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判断与性质和勾股定理的逆定理.
    20.(2017•连云港四模)阅读与理解:
    图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.
    操作与证明:
    (1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;

    (2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
    猜想与发现:
    根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?
    【考点】旋转的性质;全等三角形的判定;等边三角形的性质.菁优网版权所有
    【专题】压轴题;探究型.
    【答案】见试题解答内容
    【分析】(1)根据旋转的性质及等边三角形的性质,利用SAS判定△BCE≌△ACD,根据全等三角形的对应边相等,可得到BE=AD.
    (2)围绕证明△BCE≌△ACD,根据SAS寻找全等的条件,方法不变.
    【解答】解:操作与证明:
    (1)BE=AD.
    ∵△C′DE绕点C按顺时针方向旋转30°,
    ∴∠BCE=∠ACD=30°,
    ∵△ABC与△C′DE是等边三角形,
    ∴CA=CB,CE=CD,
    ∴△BCE≌△ACD,
    ∴BE=AD.

    (2)BE=AD.
    ∵△C′DE绕点C按顺时针方向旋转的角度为α,
    ∴∠BCE=∠ACD=α,
    ∵△ABC与△C′DE是等边三角形,
    ∴CA=CB,CE=CD,
    ∴△BCE≌△ACD,
    ∴BE=AD.
    猜想与发现:
    当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.
    【点评】此题主要考查学生对旋转的性质,等边三角形的性质及全等三角形的判定方法的综合运用能力.

    考点卡片
    1.线段的性质:两点之间线段最短
    线段公理
    两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.
    简单说成:两点之间,线段最短.
    2.全等三角形的判定
    (1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.
    (2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.
    (3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.
    (4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.
    (5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.
    方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
    3.全等三角形的判定与性质
    (1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    (2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
    4.角平分线的性质
    角平分线的性质:角的平分线上的点到角的两边的距离相等.
    注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE

    5.等腰三角形的判定
    判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】
    说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.
    ②等腰三角形的判定和性质互逆;
    ③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;
    ④判定定理在同一个三角形中才能适用.
    6.等边三角形的性质
    (1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.
    ①它可以作为判定一个三角形是否为等边三角形的方法;
    ②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.
    (2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
    等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.
    7.等边三角形的判定与性质
    (1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.
    (2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.
    (3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.
    8.勾股定理
    (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    (2)勾股定理应用的前提条件是在直角三角形中.
    (3)勾股定理公式a2+b2=c2 的变形有:a=c2-b2,b=c2-a2及c=a2+b2.
    (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
    9.勾股定理的逆定理
    (1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    说明:
    ①勾股定理的逆定理验证利用了三角形的全等.
    ②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.
    (2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.
    注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
    10.等腰直角三角形
    (1)两条直角边相等的直角三角形叫做等腰直角三角形.
    (2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);
    (3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.
    11.菱形的性质
    (1)菱形的性质
    ①菱形具有平行四边形的一切性质;
    ②菱形的四条边都相等;
    ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;
    ④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
    (2)菱形的面积计算
    ①利用平行四边形的面积公式.
    ②菱形面积=12ab.(a、b是两条对角线的长度)
    12.正方形的性质
    (1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
    (2)正方形的性质
    ①正方形的四条边都相等,四个角都是直角;
    ②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;
    ③正方形具有四边形、平行四边形、矩形、菱形的一切性质.
    ④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.
    13.旋转的性质
    (1)旋转的性质:
        ①对应点到旋转中心的距离相等.    ②对应点与旋转中心所连线段的夹角等于旋转角.    ③旋转前、后的图形全等.  (2)旋转三要素:①旋转中心; ②旋转方向; ③旋转角度.    注意:三要素中只要任意改变一个,图形就会不一样.
    14.关于原点对称的点的坐标
    关于原点对称的点的坐标特点
    (1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).
    (2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.
    注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.

    相关试卷

    2024年中考数学复习热搜题速递之图形的旋转(2023年7月):

    这是一份2024年中考数学复习热搜题速递之图形的旋转(2023年7月),共38页。

    2024年中考数学复习热搜题速递之圆:

    这是一份2024年中考数学复习热搜题速递之圆,共37页。

    2024年中考数学复习热搜题速递之图形的对称:

    这是一份2024年中考数学复习热搜题速递之图形的对称,共36页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map