数学基础模块上册3.3 函数的应用优秀当堂达标检测题
展开3.4 函数的应用
同步练习
1.小张为自己已经用光话费的手机充值100元,他购买的服务是:20元/月包接听,主叫0.2元/分钟.这个月内,他手机所存话费y(元)与主叫时间t(分钟)之间的函数关系是
A.y=100–0.2t B.y=80–0.2t
C.y=100+0.2t D.y=80+0.2t
2.网上购物常常看到下面这样一张表,第一行可以理解为脚的长度,第二行是我们习惯称呼的“鞋号”.为了穿得舒适,鞋子不能挤脚,也不能过长.
SIZE 尺码对照表
中国鞋码实际标注 (同国际码) mm | 220 | 225 | 230 | 235 | 240 | 245 | 250 | 255 | 260 | 265 |
中国鞋码习惯叫法 (同欧码) | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |
一个篮球运动员的脚长为282 mm,则从表格数据可以推算出,他最适合穿的鞋号是( )A.45 B.46 C.47 D.48
3.某产品的利润y(万元)与产量x(台)之间的函数关系式为y=-2x2+40x+300,则利润y取最大值时,产量x等于( )
A.10 B.20 C.30 D.40
4.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:
每户每月用水量 | 水价 |
不超过12m3的部分 | 3元/m3 |
超过12m3但不超过18m3的部分 | 6元/m3 |
超过18m3的部分 | 9元/m3 |
若某户居民本月缴纳的水费为90元,则此户居民本月的用水量为( )
A.17 B.18 C.19 D.20
5.某汽车油箱中存油22 kg,油从管道中匀速流出,200分钟流尽,油箱中剩余量y(kg)与流出时间x(分钟)之间的函数关系式为________.
6.已知等腰三角形的周长为,腰长为,底边长为,写出以为自变量的函数的解析式______.
7.用长度为80米的护栏围出一个一面靠墙的矩形运动场地,如图所示,运动场地的一条边记为(单位:米),面积记为(单位:平方米).
(1)求关于的函数关系;
(2)求的最大值.
1.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )
A.310元 B.300元
C.390元 D.280元
2.某社区超市的某种商品的日利润y(单位:元)与该商品的当日售价x(单位:元)之间的关系为,那么该商品的日利润最大时,当日售价为( )
A.120元 B.150元 C.180元 D.210元
3.甲、乙两人在一次赛跑中,从同一地点出发,路程与时间的函数关系如图所示,则下列说法正确的是_______.(填序号)
①甲比乙先出发;②乙比甲跑的路程多;③甲、乙两人的速度相同;④甲比乙先到达终点.
4.2021年10月,某人的工资应纳税所得额是11000元,纳税标准按如下表格,则他应该纳税___________元.
纳税级数 | 应纳税所得额 | 税率(%) |
1 | 不超过3000元的部分 | 3% |
2 | 超过3000元至12000元的部分 | 10% |
5.A,B两地相距150公里,某汽车以每小时50公里的速度从A地到B地,在B地停留2小时之后,又以每小时60公里的速度返回A地.写出该车离A地的距离s(公里)关于时间t(小时)的函数关系,并画出函数图象.
6.某市出租车收费标准:路程不超过2千米,收费为8元;路程超过2千米但不超过8千米的部分,每千米车费为元;路程超过8千米的部分,每千米车费为元,若该乘客所付车费为元,求出租车行驶的路程是____________.
1.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)之间的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)之间的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是
A.第24天的销售量为200件
B.第10天销售一件产品的利润是15元
C.第12天与第30天这两天的日销售利润相等
D.第30天的日销售利润是750元
2.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,的面积为S,则函数的图象是( ).
A. B.
C. D.
3.一辆汽车在行驶过程中,路程(千米)与时间(小时)之间的函数关系如图所示,当时,关于的函数解析式为,当时,关于的函数解析式为_____.
4.下表是某同学用某电脑软件绘制的抛物线图像时输入的数据.则该抛物线的解析式为________.
5.已知某船舶每小时航行所需费用u(单位:元)与航行速度(单位:千米/时)的函数关系为(其中a,b,k为常数),函数的部分图象如图所示.
(1)求的解析式;
(2)若该船舶需匀速航行20千米,问船舶的航行速度v为多少时,航行所需费用最少.最少的费用为多少?
6.当前新冠肺炎疫情防控形势依然严峻,要求每个公民对疫情防控都不能放松.科学使用防护用品是减少公众交叉感染、有效降低传播风险、防止疫情扩散蔓延、确保群众身体健康的有效途径.某疫情防护用品生产厂家年投入固定成本万元,每生产万件,需另投入成本(万元).当年产量不足万件时,;当年产量不小于万件时,.通过市场分析,若每万件售价为400万元时,该厂年内生产的防护用品能全部售完.(利润=销售收入-总成本)
(1)求出年利润(万元)关于年产量(万件)的解析式;
(2)年产量为多少万件时,该厂在这一防护用品生产中所获利润最大?并求出利润的最大值.
【中职专用】(高教版2021·基础模块上册)高中数学同步4.8 已知三角函数值求角(同步练习)-: 这是一份【中职专用】(高教版2021·基础模块上册)高中数学同步4.8 已知三角函数值求角(同步练习)-,文件包含48已知三角函数值求角同步练习-中职专用高一数学同步精品课堂高教版2021·基础模块上册-原卷版docx、48已知三角函数值求角同步练习-中职专用高一数学同步精品课堂高教版2021·基础模块上册-解析版docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
【中职专用】(高教版2021·基础模块上册)高中数学同步4.5诱导公式(同步练习)-: 这是一份【中职专用】(高教版2021·基础模块上册)高中数学同步4.5诱导公式(同步练习)-,文件包含45诱导公式同步练习-中职专用高一数学同步精品课堂高教版2021·基础模块上册-原卷版docx、45诱导公式同步练习-中职专用高一数学同步精品课堂高教版2021·基础模块上册-解析版docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
【中职专用】(高教版2021·基础模块上册)高中数学同步3.4函数的应用(同步练习)-: 这是一份【中职专用】(高教版2021·基础模块上册)高中数学同步3.4函数的应用(同步练习)-,文件包含34函数的应用同步练习-中职专用高一数学同步精品课堂高教版2021·基础模块上册-原卷版docx、34函数的应用同步练习-中职专用高一数学同步精品课堂高教版2021·基础模块上册-解析版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。