华师大版九年级上册3. 相似三角形的性质第3课时教案
展开23.3 相似三角形
第3课时
教学目标
1.掌握相似三角形的判定定理2和判定定理3;
2.能熟练运用相似三角形的判定定理2和判定定理3.
教学重难点
【教学重点】
相似三角形的判定定理2和判定定理3.
【教学难点】
运用相似三角形的判定定理2和判定定理3.
课前准备
无
教学过程
一、情景导入
画△ABC与△A′B′C′,使∠A=∠A′,和都等于给定的值k.设法比较∠B与∠B′的大小(或∠C与∠C′的大小),△ABC与△A′B′C′相似吗?
二、合作探究
探究点一:两边成比例且夹角相等的两个三角形相似
如图,已知点D是△ABC的边AC上的一点,根据下列条件,可以得到△ABC∽△BDC的是( )
A.AB·CD=BD·BC
B.AC·CB=CA·CD
C.BC2=AC·DC
D.BD2=CD·DA
解析:有两边对应成比例,并不能说明两个三角形相似,若再知道成比例的两边的夹角相等,则这两个三角形才相似.本题中,∠C是△ABC和△BDC的公共角,关键是找出∠C的两边对应成比例,即=或BC2=AC·DC.故选C.
方法总结:判定两个三角形相似时,应根据条件适当选择方法,如本题已知有一个公共角,而它的两条夹边都能成比例,则应选择判定定理2加以判断.
探究点二:三边成比例的两个三角形相似
已知△ABC的三边长分别为1,,,△DEF的三边长分别为,,2,试判断△ABC与△DEF是否相似.
解析:因为已知两个三角形的三边长,所以可以考虑根据三边之间的比例关系来判定两个三角形是否相似.
解:因为==,
所以△ABC与△DEF相似.
方法总结:已知两个三角形三边的大小,要判断它们是否相似,关键是通过计算来说明三边是否对应成比例.在相似三角形中,最短(长)边与最短(长)边是对应边,所以在判定两个三角形的三边是否成比例时,应先确定边的大小,以便找准对应关系.
探究点三:相似三角形的判定定理2及判定定理3的应用
如图甲,小正方形的边长均为1,则乙图中的三角形(阴影部分)与△ABC相似的是哪一个图形?
解析:图中的三角形均为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边是否对应成比例来判断乙图中的三角形与△ABC是否相似.
解:由甲图可知AC==,BC=2,AB==.
同理,图①中,三角形的三边长分别为1,,2;
同理,图②中,三角形的三边长分别为1,,;
同理,图③中,三角形的三边长分别为,,3;
同理,图④中,三角形的三边长分别为2,,.
∵===,
∴图②中的三角形与△ABC相似.
方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.
如图所示,零件的外径为a,要求它的厚度x,需求出内孔的直径AB,但不能直接量出AB,现用一个交叉长钳(AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x.
解析:欲求厚度x,而x=,根据题意较易推出△AOB∽△COD,利用相似三角形的对应边成比例,列出关于AB的比例式,解之即可.
解:因为OA:OC=OB:OD,∠AOB=∠COD,
所以△AOB∽△COD,
故==n,可得AB=bn,
所以x=.
方法总结:当条件中有两边对应成比例时,通常考虑相似三角形的判定定理2,并注意利用图形的隐含条件,如公共角、对顶角.
如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动.如果点P,Q同时出发,经过多长时间后△PBQ与△ABC相似?
解析:要证明△PBQ与△ABC相似,很显然∠B为公共角,因此可运用两边对应成比例且夹角相等来得到相似,可根据对应边成比例列方程求解,同时要注意分类讨论.
解:设经过t s后,△PBQ与△ABC相似.
(1)当=时,
△PBQ∽△ABC.
此时=,解得t=4.
即经过4s后△PBQ与△ABC相似;
(2)当=时,△PBQ∽△CBA.
此时=,解得t=1.6.
即经过1.6s后△PBQ与△ABC相似.
综上可知,点P,Q同时出发,经过1.6s或4s后△PBQ与△ABC相似.
易错提醒:在点运动的情况下寻找相似的条件,随着点的位置的变化,△PBQ的形状也会发生变化,因此既要考虑△PBQ∽△ABC的情况,还要考虑△PBQ∽△CBA的情况.
三、板书设计
相似三角形的判定定理2:两边成比例且夹角相等的两个三角形相似.
相似三角形的判定定理3:三边成比例的两个三角形相似.
四、教学反思
从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理2与全等三角形判定定理(SAS)、两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.
初中数学华师大版九年级上册第23章 图形的相似23.3 相似三角形2. 相似三角形的判定第2课时教学设计: 这是一份初中数学华师大版九年级上册第23章 图形的相似23.3 相似三角形2. 相似三角形的判定第2课时教学设计,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。
数学2. 相似三角形的判定第2课时教学设计: 这是一份数学2. 相似三角形的判定第2课时教学设计,共2页。教案主要包含了教学重点,教学难点等内容,欢迎下载使用。
华师大版4. 相似三角形的应用第4课时教案设计: 这是一份华师大版4. 相似三角形的应用第4课时教案设计,共3页。教案主要包含了教学重点,教学难点等内容,欢迎下载使用。