2022-2023学年北京市海淀区尚丽外国语学校初中部七年级(下)期末数学试卷(含解析)
展开2022-2023学年北京市海淀区尚丽外国语学校初中部七年级(下)期末数学试卷
一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)
1. 肥皂泡的泡壁厚度大约是,用科学记数法表示为( )
A. B. C. D.
2. 计算的结果是( )
A. B. C. D.
3. 下列四个多项式中,不能因式分解的是( )
A. B. C. D.
4. 不等式组的解集在数轴上表示为( )
A. B.
C. D.
5. 以下问题,不适合用全面调查的是( )
A. 了解全班同学每周体育锻炼的时间 B. 旅客上飞机前的安检
C. 学校招聘教师,对应聘人员面试 D. 了解全市中小学生每天的零花钱
6. 今年是我国建国周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了年北京市每万人发明专利申请数与授权数的情况.
根据统计图提供的信息,下列推断合理的是( )
A. 年,北京市每万人发明专利授权数逐年增长
B. 年,北京市每万人发明专利授权数的平均数超过件
C. 年申请后得到授权的比例最低
D. 年申请后得到授权的比例最高
7. 小淇将展开后得到;小尧将展开后得到,若两人计算过程无误,则的值为( )
A. B. C. D.
8. 如图,,则根据图中标注的角,下列关系中成立的是( )
A.
B.
C.
D.
9. 小亮的妈妈用元钱买了甲、乙两种水果,甲种水果每千克元,乙种水果每千克元,且乙种水果比甲种水果少买了千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果千克,乙种水果千克,则可列方程组为( )
A. B. C. D.
10. 在以下的标志中,是轴对称的是( )
A. B.
C. D.
二、填空题(本大题共6小题,共18.0分)
11. 将方程变形为用含的式子表示,则 ______ .
12. 已知和是同类项,则的值是 .
13. 已知能用完全平方公式因式分解,则的值为______.
14. 如图所示,平分,.
填空:
平分,
______ .
又,
______ .
______ .
15. 根据“二十四点”游戏的规则,用仅含有加、减、乘、除及括号的运算式每个数字只能用一次,使,,,的运算结果等于:______ 只要写出一个算式即可
16. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”这个三角形给出了的展开式的系数规律按的次数由大到小的顺序:
请依据上述规律,写出展开式中含项的系数是______ .
三、解答题(本大题共11小题,共88.0分。解答应写出文字说明,证明过程或演算步骤)
17. 本小题分
计算:;
计算.
18. 本小题分
解方程组:
19. 本小题分
.
20. 本小题分
如图,、、分别是,,上的点,,求证:.
21. 本小题分
如图,,,平分,,,求的度数.
22. 本小题分
根据图中给出的信息,解答下列问题:
放入一个小球水面升高______,放入一个大球水面升高______;
如果要使水面上升到,应放入大球、小球各多少个?
23. 本小题分
某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如图的两幅不完整的统计图如图,请你根据图中提供的信息解答下列问题:
这次调研,一共调查了______人.
有阅读兴趣的学生占被调查学生总数的______
有“其它”爱好的学生共多少人?
补全折线统计图.
24. 本小题分
如图,是一个长为,宽为的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图的形状拼图.
图中的图形阴影部分的边长为______;用含、的代数式表示
请你用两种不同的方法分别求图中阴影部分的面积;
方法一:______;
方法二:______.
观察图,请写出代数式、、之间的关系式:______.
25. 本小题分
晨光文具店用进货款元购进品牌的文具盒个,品牌的文具盒个,其中品牌文具盒的进货单价比品牌文具盒的进货单价多元.
求、两种文具盒的进货单价?
已知品牌文具盒的售价为元个,若使这批文具盒全部售完后利润不低于元,品牌文具盒的销售单价最少是多少元?
26. 本小题分
若方程组的解是二元一次方程的一个解,求方程组的解及的值.
27. 本小题分
如图,在四边形中,,找出图中所有与相等的角并证明.
答案和解析
1.【答案】
【解析】
【分析】
本题考查用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的的个数所决定.绝对值小于的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.
【解答】
解:,
故选:.
2.【答案】
【解析】解:.
故选:.
根据单项式以单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.
本题考查了单项式除单项式,单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式.
3.【答案】
【解析】解:、原式,能因式分解,不符合题意;
B、不能因式分解,符合题意;
C、原式,能因式分解,不符合题意;
D、原式,能因式分解,不符合题意.
故选:.
根据因式分解的方法,对各项分析即可得出答案.
本题考查因式分解,熟练掌握因式分解的方法是解题的关键.
4.【答案】
【解析】
【分析】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
先求出不等式组的解集,再在数轴上表示出来即可.
【解答】
解:解不等式,得:,
解不等式,得:,
不等式组的解集为,
表示在数轴上如下:
故选C.
5.【答案】
【解析】解:、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;
B、旅客上飞机前的安检,意义重大,宜用全面调查,故B选项错误;
C、学校招聘教师,对应聘人员面试必须全面调查,故C选项错误;
D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故D选项正确.
故选:.
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6.【答案】
【解析】解:年,北京市每万人发明专利授权数在年不变,此选项错误;
B.年,北京市每万人发明专利授权数的平均数为,超过件,此选项正确;
C.年申请后得到授权的比例最低,此选项错误;
D.年申请后得到授权的比例最高,此选项错误;
故选:.
根据统计图得出各年的具体数据,依据增长情况和百分比概念逐一判断即可得.
本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
7.【答案】
【解析】解:展开后得到;
,
展开后得到,
,
,
故选:.
依据小淇将展开后得到;小尧将展开后得到,即可得到,进而得出结论.
本题主要考查了完全平方公式以及平方差公式的应用,应用完全平方公式时,要注意:公式中的,可是单项式,也可以是多项式;对形如两数和或差的平方的计算,都可以用这个公式;对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.
8.【答案】
【解析】解:、与不平行,
不成立,故本选项错误;
B、与不平行,
不成立,故本选项错误;
C、,
,故本选项错误;
D、,
,故本选项正确.
故选:.
根据平行线的性质对各选项分析判断利用排除法求解.
本题考查了平行线的性质,是基础题,熟记性质是解题的关键.
9.【答案】
【解析】解:设小亮妈妈买了甲种水果千克,乙种水果千克,
由题意得.
故选:.
设小亮妈妈买了甲种水果千克,乙种水果千克,根据两种水果共花去元,乙种水果比甲种水果少买了千克,据此列方程组.
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
10.【答案】
【解析】解:、不是轴对称图形,故此选项不合题意;
B、不是轴对称图形,故此选项不合题意;
C、是轴对称图形,故此选项符合题意;
D、不是轴对称图形,故此选项不合题意;
故选:.
利用轴对称图形定义进行解答即可.
此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.
11.【答案】
【解析】解:,
移项得:.
故答案为:.
直接移项,即可得出答案.
本题考查了解二元一次方程,能熟记等式的基本性质是解此题的关键.
12.【答案】
【解析】解:根据题意知,,即,,
所以,
故答案为.
根据同类项的定义得出、的值,继而代入计算可得.
本题主要考查同类项,解题的关键是熟练掌握同类项得定义.
13.【答案】
【解析】解:关于的多项式能用完全平方公式进行因式分解,
,
故答案为:.
利用完全平方公式的结构特征判断就确定出的值.
此题考查了因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键.
14.【答案】
【解析】解:平分,
.
又,
.
.
故答案为:,,.
先证明,再证明,可得.
本题考查的是角平分线的定义,平行线的判定,熟记内错角相等,两直线平行是解本题的关键.
15.【答案】
【解析】解:根据题意得:,
故答案为:.
利用“二十四点”游戏的规则列出算式即可.
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
16.【答案】
【解析】解:由
可知,展开式中第二项为,
展开式中含项的系数是,
故答案为:.
首先确定是展开式中第几项,根据杨辉三角即可解决问题.
本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律是解题的关键.
17.【答案】解:原式
;
原式
.
【解析】把看作为一个整体,运用平方差公式计算,再运用完全平方公式计算即可;
把看作为一个整体,运用完全平方公式计算,再运用完全平方公式计算即可;
本题考查整式混合运算,熟练掌握平方差公式和完全平方公式是解题的关键,注意整体思想的运用.
18.【答案】解:
得,,解得,
把代入得,,解得,
故原方程组的解为:;
原方程组可化为:,
,得,解得,
把代入得,,解得.
故原方程组的解为:.
【解析】运用加减消元法解答即可;
先把方程化简,再运用加减消元法解答即可.
本题主要考查了二元一次方程组的解法,二元一次方程组的基本解法有加减消元法和代入消元法.
19.【答案】解:原式
.
【解析】原式利用平方差公式分解即可.
此题考查了因式分解运用公式法,熟练掌握平方差公式是解本题的关键.
20.【答案】证明:,,
四边形是平行四边形,
.
【解析】由两组对边互相平行的四边形是平行四边形可判定四边形是平行四边形,从而得.
本题主要考查平行四边形的判定与性质,解答的关键是熟记两组对边互相平行的四边形是平行四边形.
21.【答案】解:,,
,
,
,
,
又,
,
平分,
,
,
,
.
【解析】推出,根据平行线性质求出,求出,根据角平分线求出,根据平行线的性质推出,代入即可.
本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补.
22.【答案】解:;;
设应放入大球个,小球个.由题意,得
解得:,
答:如果要使水面上升到,应放入大球个,小球个.
【解析】
解答:设一个小球使水面升高厘米,由图意,得,解得;
设一个大球使水面升高厘米,由图意,得,解得:.
所以,放入一个小球水面升高,放入一个大球水面升高;
见答案.
【分析】
设一个小球使水面升高厘米,一个大球使水面升高厘米,根据图象提供的数据建立方程求解即可;
设应放入大球个,小球个,根据题意列二元一次方程组求解即可.
本题考查了列二元一次方程组和列一元一次方程解实际问题的运用,二元一次方程组及一元一次方程的解法的运用,解答时理解图画含义是解答本题的关键.
23.【答案】
【解析】解:人,
故答案为:;
,
故答案为:;
,
人,
答:有“其它”爱好的学生共人.
爱好娱乐的人数:人,
“其它”爱好的人,
如图所示.
利用运动人数除以所占百分比可得调查总人数;
利用阅读人数除以总人数可得答案;
求出其它”爱好的学生所占比例,再计算人数即可;
计算出爱好娱乐的人数,再补图即可.
此题主要考查了折线图和扇形统计图,关键是看懂统计图,能正确从统计图中获取信息.
24.【答案】
【解析】
解:阴影部分的边长;
方法一:阴影部分的面积;
方法二:大正方形的面积,大长方形的面积,
则阴影部分的面积.
由可得:;
故答案为:;;;.
【分析】
根据小长方形的长、宽分别为、即可得出答案;
方法一:直接利用正方形边长边长;方法二:大正方形的面积减去大长方形的面积;
根据方法二的表达式即可得出三者的关系式.
本题考查了完全平方公式的几何背景,属于基础题,关键是仔细审图,得出阴影部分面积的不同表示方法.
25.【答案】解:设品牌文具盒的进价为元个,
依题意得:,
解得:,
.
答:品牌文具盒的进价为元个,品牌文具盒的进价为元个.
设品牌文具盒的销售单价为元,
依题意得:,
解得:.
答:品牌文具盒的销售单价最少为元.
【解析】设品牌文具盒的进价为元个,根据晨光文具店用进货款元,可得出方程,解出即可;
设品牌文具盒的销售单价为元,根据全部售完后利润不低于元,可得出不等式,解出即可.
本题考查了一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.
26.【答案】解:方程组的解是二元一次方程,
解方程组,
解得:,.
【解析】将方程组与联立,根据三元一次方程组的解法来求出、、即可.
此题考查的是对二元一次方程组的解的计算,通过代入、的值即可得出答案.
27.【答案】解:与相等的角是,,,
证明:,
,
,
与相等的角是,,.
【解析】根据平行线的性质解答即可.
此题考查平行线的性质,关键是根据平行线的性质和对顶角相等解答.
2022-2023学年北京市海淀区尚丽外国语学校初中部七年级(下)期末数学试卷(含答案解析): 这是一份2022-2023学年北京市海淀区尚丽外国语学校初中部七年级(下)期末数学试卷(含答案解析),共15页。试卷主要包含了 肥皂泡的泡壁厚度大约是0,7×10−3B, 计算4÷2的结果是等内容,欢迎下载使用。
2022-2023学年北京市朝阳实验外国语学校七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年北京市朝阳实验外国语学校七年级(下)期末数学试卷(含解析),共12页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022-2023学年北京市海淀区育英学校七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年北京市海淀区育英学校七年级(下)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。