|学案下载
终身会员
搜索
    上传资料 赚现金
    第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(解析版)
    立即下载
    加入资料篮
    第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(解析版)01
    第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(解析版)02
    第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(解析版)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(解析版)

    展开
    这是一份第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(解析版),共11页。学案主要包含了2022年浙江,2021年新高考1卷等内容,欢迎下载使用。

    26同角三角函数的基本关系及诱导公式

    1.同角三角函数的基本关系

    (1)平方关系:sin2αcos2α1

    (2)商数关系:tan α. 平方关系对任意角都成立,而商数关系中αkπ(kZ)

    2.诱导公式

     

    2kπ

    α(kZ)

    πα

    α

    πα

    α

    α

    sin α

    sin α

    sin α

    sin_α

    cos_α

    cos_α

    cos α

    cos α

    cos α

    cos_α

    sin_α

    sin_α

    tan α

    tan α

    tan α

    tan_α

     

     

     

    3. 诱导公式的作用是把任意角的三角函数转化为锐角三角函数转化的一般步骤如下:

    即:去负脱周化锐的过程.上述过程体现了转化与化归的思想方法.

     

    4三角形中的三角函数关系式

    sin(AB)sin(πC)sinC

    cos(AB)cos(πC)=-cosC

    tan(AB)tan(πC)=-tanC

    sinsincos

    cos=cos=sin.

    12022年浙江】,则的(       

    A.充分不必要条件  B.必要不充分条件 

    C.充分必要条件  D.既不充分也不必要条件

    【答案】A

    【解析】因为可得:

    时,,充分性成立;

    时,,必要性不成立;

    所以当的充分不必要条件.

    故选:A.

    22021年新高考1卷】若,则       

    A B C D

    【答案】C

    【解析】将式子进行齐次化处理得:

    故选:C

     

    12022·山东威海·三模)已知,则___________.

    【答案】

    【解析】由题知:

    因为,所以.

    故答案为:

    2已知,则  

    A B6 C D

    【答案】B

    【解析】化简

    所以故选B

    3ABC中,下列结论不正确的是(  )

    Asin(AB)sin C

    Bsin cos 

    Ctan(AB)=-tan C

    Dcos(AB)cos C

    【答案】 D

    【解析】ABC中,有ABCπ

    sin(AB)sin(πC)sin CA正确.

    sin sincos B正确.

    tan(AB)tan(πC)=-tan CC正确.

    cos(AB)cos(πC)=-cos CD错误.

    4化简:的值为(    

     A.  B.  C.  D.

    【答案】B

    【解析】:原式==-1

    52022·湖南益阳·一模)若,则

    A B C D

    【答案】C

    【解析】可知:

    ==.

    故选C.

    62022·河北唐山·三模)若,则___________

    【答案】4

    【解析】因为,两边同时平方得,即,所以

    因此

    故答案为:4.

    考向一 三角函数的诱导公式

    1已知α是第三象限角,且f(α)

    (1)cos,求f(α)的值;

    (2)α=-1 860°,求f(α)的值.

     

    【解析】f(α)=-cosα

    (1) cos=-sinα sinα=-

    α是第三象限的角,

    cosα=-=-

    f(α)=-cosα

    (2) f(α)=-cos(1860°)=-cos(60°)=-

     

    变式1已知f(α),则f的值为    

    【答案】

    【解析】 因为f(α)cos α,所以fcos

    cos .

     

    变式2 求值:sin (1 200°)cos 1 290°cos (1 020°)·sin (1 050°)______

    【答案】 1

    【解析】 原式=-sin 1 200°cos 1 290°cos 1 020°sin 1 050°=-sin (3×360°120°)·cos (3×360°210°)cos (2×360°300°)·sin (2×360°330°)=-sin 120°cos 210°cos 300°sin 330°=-sin (180°60°)cos (180°30°)cos (360°60°)sin (360°30°)sin 60°cos 30°cos 60°sin 30°××1.

    方法总结:1熟知将角合理转化的流程

    也就是:“负化正,大化小,化到锐角就好了.”

    2.明确三角函数式化简的原则和方向

    (1)切化弦,统一名.

    (2)用诱导公式,统一角.

    (3)用因式分解将式子变形,化为最简.

    考向二  同角函数关系式的运用

    2已知x(π0)sin xcos x.求:

    (1) sin xcos x的值;

    (2) 的值.

    【解析】 (1) sin xcos x两边平方,

    sin2x2sinx cos xcos2x

    整理,得2sinx cos x=-

    所以(sin xcos x)212sin x cos x.

    x(π0),知sin x0.

    sin xcos x0

    所以cos x0,则sin xcos x0

    sin xcos x=-.

    (2)

    =-

     变式1(1)α是三角形的内角tanα=-sinαcosα的值为_  __

    (2)已知sinαcosααcosαsinα的值为__ __

    【答案】1.2.

    【解析】 (1)tanα=-sinα=-cosα将其代入sin2αcos2α1cos2α1cos2α易知cosα0cosα=-sinαsinαcosα=-.

    (2)αcosα0sinα0cosαsinαcosαsinα0.(cosαsinα)212sinαcosα12×cosα-sinα.

     

    变式22022鄂尔多斯第一中学月考)化简:

    (1) cos αsin αα是第二象限角);

    (2) sin4αsin2αcos2αcos2α.

     

    【解析】(1) cos αsin αcos α·sinα·

    cosα·sin α·

    cos α·sin α·=-1sin α1cos αsin αcos α.

    (2) sin4αsin2αcos2αcos2αsin2α(sin2αcos2α)cos2αsin2αcos2α1.

    变式3已知2cos2α3cosαsin α3sin2α1α.求:

    (1)tan α的值;

    (2) 的值.

    【解析】 (1) 因为2cos2α3cosαsin α3sin2α1,且cos2αsin2α1

    所以1

    所以1

    解得tanα=-tan α1.

    α,所以tan α=-.

    (2) =-.

     

    方法总结:本题考查同角三角函数的关系式.利用sin2αcos2α1可以实现角α的正弦、余弦的互化利用tanα可以实现角α的弦切互化如果没有给出角的范围则要分类讨论.应用公式时注意方程思想的应用:对于sinαcosαsinαcosαsinαcosα这三个式子利用(sinα±cosα)21±2sinαcosα可以知一求二.所求式是关于sinαcosα的齐次式时分子分母同除以cosα可化成tanα的函数式求值.本题考查运算求解能力考查函数与方程思想.

    考向三  同角三角函数关系式、诱导公式的综合应用

    3已知cos(75°+α)=α是第三象限角cos(15°-α)+sin(α-15°)的值

    【解析】因为cos(15°-α)=cos[90°-(75°+α)]=sin(75°+α)

    由于α是第三象限角所以sin(75°+α)<0

    所以sin(75°+α)=

    因为sin(α-15°)=sin[-90°+(75°+α)]=-sin[90°- (75°+α)]= -cos(75°+α)=-

    所以cos(15°-α)+sin(α-15°)=

    变式1已知cos(75°α),求cos(105°α)sin(15°α)        .

    【答案】 0

    【解析】因为(105°α)(75°α)180°

    (15°α)(α75°)90°

    所以cos(105°α)cos[180°(75°α)]

    =-cos(75°α)

    =-

    sin(15°α)sin[90°(α75°)]

    cos(75°α).

    所以cos(105°α)sin(15°α)=-0.

    变式2 已知tan ,则tan     

    【答案】

    【解析】 tan tan [π-(α]=-tan .

    变式3已知sin ,则sin x)+sin2的值为    

    【答案】

    【解析】sin sin2

    sinsin2

    =-sincos2

    =-sin1sin2.

    方法总结:1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.

    2.注意角的范围对三角函数值符号的影响.

     

    12022·广东广州·一模)若,则___________.

    【答案】

    【解析】解:因为,所以,因为,所以

    所以

    故答案为:

    22022·湖南·长郡中学一模)已知角的顶点在原点,始边与x轴非负半轴重合,终边与直线垂直,则的值为(        

    A B C2 D3

    【答案】B

    【解析】因为角的终边与直线垂直,即角的终边在直线上,

    所以

    故选:B

    32022·山东·烟台二中模拟预测)已知,则______

    【答案】01##10

    【解析】得:

    ,所以.

    故答案为:01

    42022·湖北武汉·模拟预测)已知,则       

    A B C D

    【答案】C

    【解析】

    ,所以.

    故选:C

    52022·广东茂名·模拟预测)已知,则       

    A B C D

    【答案】B

    【解析】

    故选:B.

    62022·福建三明·模拟预测)已知,则       

    A.- B C.- D

    【答案】A

    【解析】

    所以

    故选:A

    72022·湖北·模拟预测)已知,则       

    A B C D

    【答案】D

    【解析】因为,所以,所以

    .

    故选:D.

    82022·辽宁葫芦岛·二模)若,则       

    A B C-3 D3

    【答案】C

    【解析】

    分子分母同除以

    解得:

    故选:C


     

    相关学案

    第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(原卷版): 这是一份第26讲 同角三角函数的基本关系及诱导公式-2024年高考数学一轮复习精品导学案(新高考)(原卷版),共7页。学案主要包含了2022年浙江,2021年新高考1卷等内容,欢迎下载使用。

    2024届高考数学一轮复习第4章第2节同角三角函数的基本关系与诱导公式学案: 这是一份2024届高考数学一轮复习第4章第2节同角三角函数的基本关系与诱导公式学案,共18页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。

    高考数学一轮复习第4章第2节同角三角函数的基本关系与诱导公式学案: 这是一份高考数学一轮复习第4章第2节同角三角函数的基本关系与诱导公式学案,共12页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map