终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第六讲函数综合及其应用

    立即下载
    加入资料篮
    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二  函数概念与基本初等函数 第六讲函数综合及其应用第1页
    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二  函数概念与基本初等函数 第六讲函数综合及其应用第2页
    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二  函数概念与基本初等函数 第六讲函数综合及其应用第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第六讲函数综合及其应用

    展开

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第六讲函数综合及其应用,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    专题二  函数概念与基本初等函数第六讲 函数的综合及其应用一、选择题12017天津)已知函数若关于的不等式R上恒成立,则a的取值范围是A         B    C      D22015北京)汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时相同条件下,在该市用丙车比用乙车更省3.(2014北京)加工爆米花,爆开且不糊的粒的百分比称为食用特定条件下,可食用率加工时间单位:分钟满足函数关系常数,下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为    A分钟   B分钟   C分钟   D分钟4.(2014湖南)某市生产总值连续两年持续增加,第一年的增长率为,第二年的增长率为,则该市这两年生产总值的年平均增长率为A     B     C   D二、填空题5.(2017山东)若函数(e=271828,是自然对数的底数)的定义域上单调递增,则称函数具有性质,下列函数中具有性质的是                  62017江苏)是定义在且周期为1的函数,在区间上,其中集合,则方程的解的个数是           72017新课标如图,圆形纸片的圆心为,半径为5 cm,该纸片上的等边三角形的中心为为圆上的点,分别是以为底边的等腰三角形。沿虚线剪开后,分别以为折痕折起,使得重合,得到三棱锥。当的边长变化时,所得三棱锥体积(单位:)的最大值为_______8(2016年北京) 设函数,则的最大值为____________________无最大值,则实数的取值范围是_________________9.(2015四川)某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系为自然对数的底数,为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是     小时.10.(2014山东)已知函数,对函数,定义关于对称函数为函数满足:对任意,两个点关于点对称,若关于对称函数,且恒成立,则实数的取值范围是____11.(2014福建)要制作一个容器为4,高为的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)12.(2014四川)以表示值域为的函数组成的集合,表示具有如下性质的函数组成的集合:对于函数,存在一个正数,使得函数的值域包含于区间.例如,当时,.现有如下命题:设函数的定义域为,则的充要条件是函数的充要条件是有最大值和最小值;若函数的定义域相同,且,则若函数)有最大值,则其中的真命题有       .(写出所有真命题的序号)三、解答题132018上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族中的成员仅以自驾或公交方式通勤,分析显示:当的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.142018江苏某农场有一块农田,如图所示,它的边界由圆的一段圆弧为此圆弧的中点)和线段构成.已知圆的半径为40米,点的距离为50米.规划在此农田上修建两个温室大棚,大棚内的地块形状为矩形,大棚内的地块形状为,要求均在线段上,均在圆弧上.设所成的角为(1)分别表示矩形的面积,并确定的取值范围;(2)若大棚内种植甲种蔬菜,大棚内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.15(2016年上海高考)已知,函数.1)当时,解不等式2)若关于的方程的解集中恰好有一个元素,求的取值范围;3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.16.(2015江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为,计划修建的公路为,如图所示,的两个端点,测得点的距离分别为5千米和40千米,点的距离分别为20千米和2.5千米,以所在的直线分别为轴,建立平面直角坐标系,假设曲线符合函数(其中为常数)模型.I)求的值;II)设公路与曲线相切于点,的横坐标为.     请写出公路长度的函数解析式,并写出其定义域;     为何值时,公路的长度最短?求出最短长度.172013重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100/平方米,底面的建造成本为160/平方米,该蓄水池的总建造成本为12000元(为圆周率).)将表示成的函数,并求该函数的定义域;)讨论函数的单调性,并确定为何值时该蓄水池的体积最大.182012陕西)设函数1)设,证明:在区间内存在唯一的零点;2)设n为偶数,,求的最小值和最大值;3)设,若对任意,有,求的取值范围;192011江苏)请你设计一个包装盒,如图所示,是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点,正好形成一个正四棱柱形状的包装盒,上是被切去的等腰直角三角形斜边的两个端点,设cm     1广告商要求包装盒侧面积cm)最大,试问应取何值?2广告商要求包装盒容积cm)最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.

    相关试卷

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第五讲函数与方程答案:

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第五讲函数与方程答案,共15页。试卷主要包含了解析,-3等内容,欢迎下载使用。

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第五讲函数与方程:

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第五讲函数与方程,共7页。

    2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第三讲函数的概念和性质答案:

    这是一份2024届高考第一轮复习:理科数学2010-2018高考真题分类训练之专题二 函数概念与基本初等函数 第三讲函数的概念和性质答案,共14页。试卷主要包含了D【解析】, B【解析】 因为,, 【解析】解析等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map