江苏省苏州市张家港市梁丰中学2022-2023学年七年级数学第二学期期末学业水平测试试题含答案
展开江苏省苏州市张家港市梁丰中学2022-2023学年七年级数学第二学期期末学业水平测试试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是( )
A.测量对角线是否相互平分 B.测量两组对边是否分别相等
C.测量一组对角是否都为直角 D.测量四边形其中的三个角是否都为直角
2.下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5 B.5,7,8 C.8,15,17 D.1,
3.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( )
A.至少有一个内角是直角 B.至少有两个内角是直角
C.至多有一个内角是直角 D.至多有两个内角是直角
4.如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是( )
A.2 B.3 C.4 D.5
5.如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为( )
A. B. C. D.
6.下列代数式是分式的是( )
A. B. C. D.
7.如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是( )
A.∠B=30° B.AD=BD
C.∠ACB=90° D.△ABC是直角三角形
8.如图,一油桶高0.8m,桶内有油,一根木棒长1m,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,拍出木棒,量得棒上没油部分长0.8m,则桶内油的高度为( )
A.0.28m B.0.64m C.0.58m D.0.32m
9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )
A.140米 B.150米 C.160米 D.240米
10.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是( )
A. B. C. D.
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.
12.如图,的顶点在矩形的边上,点与点、不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_____.
13.如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________
14.如图,中,是延长线上一点,,连接交于点,若平分,,则________.
15.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).
16.为了了解某校九年级学生的体能情况,随机抽查额其中名学生,测试分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的统计图(注:包括,不包括,其他同),根据统计图计算成绩在次的频率是__________.
三、解下列各题(本大题共8小题,共72分)
17.(8分)小亮步行上山游玩,设小亮出发x min加后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系,
(1)小亮行走的总路程是____________m,他途中休息了____________min.
(2)当5080时,求y与x的函数关系式.
18.(8分) (1)计算:
(2)解方程: .
19.(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
设某户每月用水量x(立方米),应交水费y(元).
(1)求a,c的值;
(2)当x≤6,x≥6时,分别写出y与x的函数关系式;
(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
20.(8分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.
(1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)
(2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积。
21.(8分)已知二次函数y=x2-2x-3.
(1)完成下表,并在平面直角坐标系中画出这个函数图像.
x | … |
|
|
|
|
| … |
y | … |
|
|
|
|
| … |
(2)结合图像回答:
①当时,有随着的增大而 .
②不等式的解集是 .
22.(10分)某公司把一批货物运往外地,有两种运输方案可供选择.
方案一:使用快递公司的邮车运输,装卸收费400元,另外每千米再回收4元;
方案二:使用快递公司的火车运输,装卸收费820元,另外每千米再回收2元.
(1)分别求邮车、火车运输总费用y1(元)、y2(元)关于运输路程x(km)之间的函数关系式:
(2)如何选择运输方案,运输总费用比较节省?
23.(10分)解方程:
(1)2x2﹣x﹣6=0;
(2).
24.(12分)王老师从学校出发,到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).
(1)求王老师步行和骑共享单车的平均速度分别为多少?
(2)买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、B
5、B
6、D
7、A
8、B
9、B
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、或10
12、1
13、3或1
14、1
15、25%.
16、
三、解下列各题(本大题共8小题,共72分)
17、(1)3600,20;(2)y=55x-800.
18、(1)9;(2)
19、 (1)1.5;6;(2)y=6x-27,(x>6);(3)21元.
20、(1)菱形的面积=4;平行四边形的面积=4;作图见解析(2)正方形的面积=10,作图见解析.
21、(1)完成表格,函数图象见解析;(2)①增大;②.
22、(1)y1=4x+400,y2=2x+820;(2)当运输路程x不超过210千米时,使用方式一最节省费用;当运输路程x超过210千米时,使用方式二最节省费用;当运输路程x等于210千米时,使用两种方式的费用相同.
23、 (1) ,;(2) .
24、(1), (2)