江苏省苏州市张家港市梁丰中学2023-2024学年数学九上期末质量检测试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.在同一直角坐标系中,一次函数与反比例函数的图象大致是( )
A.B.C.D.
2.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为( )
A.y=(x﹣3)2+1B.y=(x+1)2﹣1C.y=(x﹣3)2﹣1D.y=(x+1)2﹣2
3.如图,在△ABC中,D,E,F分别为BC,AB,AC上的点,且EF∥BC,FD∥AB,则下列各式正确的是( )
A.B.C.D.
4.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则=( )
A.﹣6B.2C.16D.16或2
5.从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④B.①②C.②③④D.②③
6.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
A.且B.C.D.
7.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则( )
A.18(1+2x)=33B.18(1+x2)=33
C.18(1+x)2=33D.18(1+x)+18(1+x)2=33
8.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是( )
A.
B.
C.,,三点在同一直线上
D.
9.若是一元二次方程的两个实数根,则的值为( )
A.B.C.D.
10.如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为( )
A.40°B.50°C.80°D.100°
11.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为( )
A.(,)B.(,)C.(,)D.(,4)
12.如图,点,为直线上的两点,过,两点分别作轴的平行线交双曲线()于、两点.若,则的值为( )
A.12B.7C.6D.4
二、填空题(每题4分,共24分)
13.如图,在△ABC中,AC=6,BC=10,,点D是AC边上的动点(不与点C重合),过点D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为_______________________.
14.代数式+2的最小值是_____.
15.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).
16.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.
17.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为_____
18.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm
三、解答题(共78分)
19.(8分)定义:将函数C1的图象绕点P(m,0)旋转180°,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数。例如:当m=1时,函数y=(x-3)2+1关于点P(1,0)的相关函数为y=-(x+1)2-1.
(1)当m=0时,
①一次函数y=-x+7关于点P的相关函数为_______;
②点A(5,-6)在二次函数y=ax2-2ax+a(a≠0)关于点P的相关函数的图象上,求a的值;
(2)函数y=(x-2)2+6关于点P的相关函数是y= -(x-10)2-6,则m=_______
(3)当m-1≤x≤m+2时,函数y=x2-6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.
20.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.
(1)请写出.所有可能出现的结果;
(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.
21.(8分)已知抛物线y=2x2-12x+13
(1)当x为何值时,y有最小值,最小值是多少?
(2)当x为何值时,y随x的增大而减小
(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式
22.(10分)某商场销售一种成本为每件元的商品,销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似看作一次函数.商场销售该商品每月获得利润为(元).
(1)求与之间的函数关系式;
(2)如果商场销售该商品每月想要获得元的利润,那么每件商品的销售单价应为多少元?
(3)商场每月要获得最大的利润,该商品的销售单价应为多少?
23.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)
24.(10分)如图,为⊙的直径,为⊙上一点,为的中点.过点作直线的垂线,垂足为,连接.
(1)求证:;
(2)与⊙有怎样的位置关系?请说明理由.
25.(12分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.
小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.
下面是小颖的探究过程,请补充完整:
(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:
在、和的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数.
(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:
(3)结合函数图像,解决问题:
当为等腰三角形时,的长约为
26.(12分)解方程:
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、D
4、D
5、D
6、A
7、C
8、B
9、C
10、B
11、C
12、C
二、填空题(每题4分,共24分)
13、
14、1
15、<
16、且k≠1
17、1
18、12π
三、解答题(共78分)
19、(1)①;②;(2)6;(3)的值为或.
20、(1)见解析;(2)不公平,理由见解析
21、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.
22、(1);(2)销售单价应为元或元;(3)定价每件元时,每月销售新产品的利润最大.
23、4秒
24、(1)见解析;(2)与⊙相切,理由见解析.
25、(1);(2)画图见解析;(3)或或
26、x1=4,x2=-2
位置
位置
位置
位置
位置
位置
位置
江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案: 这是一份江苏省张家港市梁丰初级中学2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法,如图,正六边形内接于,连接,如图所示的几何体的左视图是等内容,欢迎下载使用。
2023-2024学年江苏省苏州市张家港市梁丰初级中学九上数学期末联考试题含答案: 这是一份2023-2024学年江苏省苏州市张家港市梁丰初级中学九上数学期末联考试题含答案,共7页。试卷主要包含了抛物线与坐标轴的交点个数为,已知是方程的一个解,则的值是等内容,欢迎下载使用。
2023-2024学年江苏省苏州市张家港市梁丰高级中学数学九上期末考试试题含答案: 这是一份2023-2024学年江苏省苏州市张家港市梁丰高级中学数学九上期末考试试题含答案,共7页。试卷主要包含了下列事件中,属于必然事件的是,如图所示的工件的主视图是等内容,欢迎下载使用。