还剩20页未读,
继续阅读
所属成套资源:单元专题卷(数学人教版9年级下册)
成套系列资料,整套一键下载
- 数学人教版9年级上册第26单元专题卷01 试卷 0 次下载
- 数学人教版9年级上册第27单元专题卷01 试卷 0 次下载
- 数学人教版9年级上册第27单元专题卷02 试卷 0 次下载
- 数学人教版9年级上册第28单元专题卷01 试卷 2 次下载
- 数学人教版9年级上册第28单元专题卷02 试卷 0 次下载
数学人教版9年级上册第26单元专题卷02
展开
这是一份数学人教版9年级上册第26单元专题卷02,共23页。
数学人教版
数学人教版9年级上册第26单元专题卷02
一、单选题
1.功是常数W(J)时,表示力F(N)与物体在力F的方向上通过的距离s(m)的函数关系的图象只可能是( )
A. B. C. D.
2.某品牌的饮水机接通电源就进入自动程序:开机加热到水温 ,停止加热,水温开始下降,此时水温 ()与开机后用时 ()成反比例关系,直至水温降至 ,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.在水温为 时,接通电源后,水温 ()和时间 ()的关系如图所示,水温从 降到 所用的时间是 ( )
A. 分钟 B. 分钟 C. 分钟 D. 分钟
3.某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流与电阻的关系图象,该图象经过点.根据图象可知,下列说法正确的是( )
A.当时, B.I与R的函数关系式是
C.当时, D.当时,I的取值范围是
4.为了响应“绿水青山就是金山银山”的号召,加强生态文明建设,某工厂自今年1月份开始限产进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是( )
A.治污改造完成后每月利润比前一个月增加30万元
B.治污改造完成前后共有5个月的利润不超过100万元
C.10月份该厂利润达到190万元
D.4月份的利润为50万元
5.某玩具厂计划生产一种玩具熊猫,已知每只玩具熊猫的成本为y元,若该厂每月生产只(取正整数),这个月的总成本为5000元,则y与x之间满足的关系为( )
A. B.
C. D.
6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压(单位:千帕)随气球内气体的体积(单位:立方米)的变化而变化,随的变化情况如下表所示,那么在这个温度下,气球内气体的气压P与气球内气体的体积的函数关系最可能是
(单位:立方米)
64
48
38.4
32
24
…
(单位:千帕)
1.5
2
2.5
3
4
…
A.正比例函数 B.一次函数 C.二次函数 D.反比例函数
7.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的与的数据如表:
时间分钟
含药量毫克
则下列图象中,能表示与的函数关系的图象可能是( )
A. B.
C. D.
8.两个物体A,B所受的压强分别为,(都为常数).它们所受压力F与受力面积S的函数关系图象分别是射线、,已知压强,则( )
A. B. C. D.
9.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是( )
A. B. C. D.
10.在显示汽车油箱内油量的装置模拟示意图中,电压一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积与电路中总电阻是反比例关系,电流与也是反比例关系,则与的函数关系是( )
A.反比例函数 B.正比例函数 C.二次函数 D.以上答案都不对
11.古希腊学者阿基米德发现了著名的“杠杆原理”:杠杆平衡时,阻力×阻力臂=动力×动力臂.几位同学玩撬石头游戏,已知阻力(石头重量)和阻力臂分别为1600N和0.5m,小明最多能使出500N的力量,若要撬动这块大石头,他该选择撬棍的动力臂( )
A.至多为 B.至少为 C.至多为 D.至少为
12.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,其图像经过点A(如图).当气球内的气压大于144kPa时,气球将爆炸,为确保气球不爆炸,该气球的体积应( )
A.不大于 B.不小于 C.不大于 D.不小于
13.一司机驾驶汽车从甲地去乙地,他以80km/h的平均速度用2h到达目的地,当他按原路匀速返回时,汽车的速度v与时间t的函数关系是( )
A. B. C. D.
14.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点在其图象上,则当力达到10N时,物体在力的方向上移动的距离是( )
A.2.4m B.1.2m C.1m D.0.5m
15.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)与该校参加竞赛人数的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )
A.甲 B.乙 C.丙 D.丁
16.木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图所示,当压强不超过400 Pa时,木板的面积应( )
A.不大于1.5 m2 B.不小于1.5 m2
C.不大于m2 D.不小于m2
17.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温和时间的关系如图所示,水温从100℃降到50℃所用的时间是( )
A.7分钟 B.13分钟 C.20分钟 D.27分钟
18.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种蔬菜.上图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图像,其中BC段是双曲线(k≠0)的一部分,则当x = 16时,大棚内的温度约为( )
A.18℃ B.15.5℃ C.13.5℃ D.12℃
二、填空题
19.在对物体做功一定的情况下,力与此物体在力的方向上移动的距离成反比例函数关系,其图象如图所示,则当力达到时,此物体在力的方向上移动的距离是________.
20.已知近视眼镜的度数D(度)与镜片焦距f(米)成反比例关系,且度近视眼镜镜片的焦距为米.小慧原来戴度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为米的眼镜了,则现在小慧所戴的眼镜为 ____度.
21.如表记录了一组物理试验数据,已知当温度不变时,气球内气体的压强(单位:)是气体体积(单位:)的函数,则与的函数关系式是______.
(单位:)
(单位:)
22.你吃过兰州拉面吗?实际上做拉面的过程渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条粗细(横截面积)的反比例函数,假设其图象如图所示,则与之间的函数表达式为________.
23.如图,某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.
(1)设矩形园子的相邻两边长分别为xm,ym,y关于x的函数表达式为 _____(不写自变量取值范围);
(2)当y≥4m时,x的取值范围为 _____;
(3)当一条边长为7.5m时,另一条边的长度为 _____m.
24.一辆汽车前灯电路上的电压U(V)保持不变,选用灯泡的电阻为R(Ω),通过的电流强度为I(A),由欧姆定律可知,I.当电阻为40Ω时,测得通过的电流强度为0.3A.为保证电流强度不低于0.2A且不超过0.6A,则选用灯泡电阻R的取值范围是____.
25.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进.但实际上走出的是一个大圆圈,这就是有趣的“瞎转圈”现象,经研究,某人蒙上眼睛走出的大圆圈的半径y(米)是其两腿迈出的步长之差x(厘米)()的反比例函数,其图象如图所示.若此人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是___厘米.
26.列车从甲地驶往乙地.行完全程所需的时间与行驶的平均速度之间的反比例函数关系如图所示.若列车要在内到达,则速度至少需要提高到__________.
27.琪琪同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.
(1)y与x之间的函数关系式为________;x取值范围是________.
(2)当x的值为6,8,10时,对应的函数值分别为,比较与的大小:________.
28.小宇每天骑自行车上学,从家到学校所需时间(分)与骑车速度(千米/分)关系如图所示.一天早上,由于起床晚了,为了不迟到,需不超过分钟赶到学校,那么他骑车的速度至少是__________千米/分.
29.某八年级学生在参与“学雷锋微博帮忙团”活动中,除5名“特困”学生未捐款外,其余学生共向灾区人民捐款4000元,则平均每人捐款y(元)与该年级学生人数x(人)之间的函数关系为________________.
30.李老师参加了某电脑公司推出的分期付款(无利息)购买电脑活动,他购买的电脑价格为9800元,交了首付之后每月付款y元,x个月结清余款,y与x满足如图的函数解析式,通过以上信息可知李老师的首付款为_______.
三、解答题
31.小明在某一次实验中,测得两个变量之间的关系如下表所示:
x
1
2
3
4
12
y
12.03
5.98
3.03
1.99
1.00
请你根据表格回答下列问题:
①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由;
②请你写出这个函数的解析式;
③表格中空缺的数值可能是多少?请你给出合理的数值.
32.某商场出售一批进价为2元的贺卡,在市场营销中发现,此种贺卡的销售单价x(单位:元)与日销售量y(单位:张)之间有如下关系:
销售单价x(元)
3
4
5
6
日销售量y(张)
20
15
12
10
(1)根据表中数据在平面直角坐标系中描出实数对的对应点;
(2)确定y与x之间的函数关系式,并画出图象;
(3)设此种贺卡的日销售利润为w元,试求出w与x之间的函数关系式.若物价局规定此种贺卡的售价最高不超过10元/张,请你求出销售单价x定为多少元时,才能获得最大日销售利润?并求出最大日销售利润.
33.电灭蚊器的电阻y()随温度x()变化的大致图象如图所示,通电后温度由室温上升到时,电阻与温度成反比例函数关系,且在温度达到时,电阻下降到最小值,随后电阻随温度升高而增加,温度每上升,电阻增加.
(1)当时,求y与x之间的关系式;
(2)电灭蚊器在使用过程中,温度x在什么范围内时,电阻不超过?
34.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中、分别为线段,为双曲线的一部分):
(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?请说明理由.
35.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度与时间之间的函数关系,其中线段、表示恒温系统开启阶段,双曲线的一部分表示恒温系统关闭阶段.请根据图中信息解答下列问题:
(1)求这天的温度y与时间的函数关系式;
(2)若大棚内的温度低于时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
36.汽车从甲地开往乙地,记汽车行驶时间为小时,平均速度为千米/小时(汽车行时速度不超过千米/小时),根据经验,,的一组对应值如下表;
(千米/小时)
(小时)
(1)根据表中的数据,分析说明平均速度(千米/小时)关于行驶时间(小时)的函数关系,并求出其表达式;
(2)汽车上午从甲地出发,能否在上午之前到达乙地?请说明理由.
37.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标随时间(分钟)变化的函数图象如图所示,当和时,图象是线段,当时,图象是反比例函数的一部分.
(1)求点对应的指标值.
(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.
38.喝茶前需要烧水和泡茶两个工序,电热水壶将水烧到100℃,然后继续加热1分钟后断电,烧水时水温y(℃)与时间成一次函数关系;断电后,水壶中水的温度(℃)与时间近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中AB段和CD段所对应的函数关系式;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡茶,问从水烧开到泡茶需要等待多长时间?
39.如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆).设的长为(m),的长为(m).
(1)求关于的函数表达式.
(2)若围成矩形劳动基地三边的篱笆总长为10m,求和的长度
(3)若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.
40.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要24min;完成2间办公室和1间教室的药物喷洒要14min.
(1)求校医完成一间办公室和一间教室的药物喷洒各要多少时间?
(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为:y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十班教室(共10间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.
参考答案
1.C
2.C
3.D
4.B
5.C
6.D
7.D
8.B
9.C
10.B
11.B
12.B
13.D
14.B
15.C
16.B
17.A
18.C
19.1
20.
21.
22.
23. y 1.2≤x≤3 1.6
24.
25.0.4
26.240
27. ; x为的整数; >.
28.
29.y=(x>5)
30.3800元
31.解:(1)由表中自变量x和因变量y的数值可知:
自变量x和因变量y的乘积都大约等于12,且随着自变量x值的逐渐增加,因变量y的值逐渐减少,
故两个变量x和y之间可能是反比例函数关系.
(2)∵两自变量的乘积等于12,
且两自变量为反比例函数关系,
∴;
(3)将代入得:;
将代入得:.
故表格中x的空值填6,y的空值填4.
32.(1)解:建立平面直角坐标系描点,如图所示:
(2)解:由题意设y与x之间的函数关系式为(且k为常数),把代入,得,
将,,分别代入,均成立,
所以y与x之间的函数关系式为,
画出的图象如上图所示;
(3)解:,
当时,w随x的增大而增大,
又因为,
所以当时,,
所以,销售单价x定为10元时,才能获得最大日销售利润,最大日销售利润为 48元.
33.(1)解:当时,设y与x之间的关系式为,
根据题意得:该函数图象过点,
∴.
∴当时,y与x的关系式为:;
(2)解:∵,
∴当时,.
根据题意得:该函数图象过点,
∵温度每上升,电阻增加.
∴该函数图象过点,
∴,解得:,
∴当时,y与x的关系式为:;
对于当时,;
对于当时,;
答:温度x取值范围是时,电阻不超过.
34.(1)设线段所在直线的解析式为,
把代入得,
∴,
∴,
设,所在双曲线的解析式为,
把代入得,
∴.
当时,;
当时,.
∴.
∴第30分钟学生的注意力更集中;
(2)能
令,则,
∴.
令,则,
∴.
∵,
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目
35.(1)解:设线段解析式为
∵线段过点,,
∴,解得
∴线段的解析式为:
∵B在线段上当时,,
∴B坐标为,
∴线段的解析式为:,
设双曲线解析式为:
∵,
∴,
∴双曲线的解析式为:
∴y关于x的函数解析式为:
(2)把代入中,解得:,
∴(小时),
∴恒温系统最多可以关闭10小时,蔬菜才能避免受到伤害.
36.(1)解:∵,,即每一对与的对应值乘积为一定值,在减小,在增大,
∴与成反比关系,设,
把,代入反比例函数得,,
∴与的表达式为,
∵汽车行时速度不超过千米/小时,
∴,
∴,
∴平均速度(千米/小时)关于行驶时间(小时)的函数关系是反比例函数,表达式为.
(2)解:∵(小时),
∴(千米/小时),
∵汽车行时速度不超过千米/小时,,
∴不能.
37.(1)解:设反比例函数为,由图可知点在的图象上,
∴,
∴
将代入得:点对应的指标值为
(2)(2)设直线的解析式为,将、代入中,
得,解得
∴直线的解析式为
①当时,
解得:,
②当时,45>30,显然注意力指标高于30,
③当时,,
解得:,
综上所述:
∴注意力指标不低于30的高效时间段是上课4分钟到30分钟之间.
38.(1)解:停止加热时,设,
由题意得:50= ,
解得:k=900,
∴y=,
当y=100时,解得:x=9,
∴C点坐标为(9,100),
∴B点坐标为(8,100),
当加热烧水时,设y=ax+20,
由题意得:100=8a+20,
解得:a=10,
∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);
当停止加热,得y与x的函数关系式为y=100(8<x≤9);y=(9<x≤45);
(2)把y=80代入y=,得,
因此从烧水开到泡茶需要等待分钟.
39.(1)解:依题意得:xy=12,
∴.
又∵墙长为6m,
∴,
∴.
∴y关于x的函数表达式为:.
(2)解:依题意得:,
∴或,
∵,
∴,
∴;
(3)解:依题意得:,,
∴,
∵和的长都是正整数,
∴或,
∴则满足条件的围建方案为:或
40.(1)设完成一间办公室和一间教室的药物喷洒各要x min和y min,
则 ,
解得:,
故校医完成一间办公室和一间教室的药物喷洒各要4min和6min;
(2)一间教室的药物喷洒时间为6min,则10个房间需要60min,
当x=6时,y=2x=12,
故点A(6,12),
设反比例函数表达式为:y,
将点A的坐标代入上式并解得:k=72,
故反比例函数表达式为 ,
当x=60时, 1.2>1,
故一班学生不能安全进入教室.
数学人教版
数学人教版9年级上册第26单元专题卷02
一、单选题
1.功是常数W(J)时,表示力F(N)与物体在力F的方向上通过的距离s(m)的函数关系的图象只可能是( )
A. B. C. D.
2.某品牌的饮水机接通电源就进入自动程序:开机加热到水温 ,停止加热,水温开始下降,此时水温 ()与开机后用时 ()成反比例关系,直至水温降至 ,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.在水温为 时,接通电源后,水温 ()和时间 ()的关系如图所示,水温从 降到 所用的时间是 ( )
A. 分钟 B. 分钟 C. 分钟 D. 分钟
3.某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流与电阻的关系图象,该图象经过点.根据图象可知,下列说法正确的是( )
A.当时, B.I与R的函数关系式是
C.当时, D.当时,I的取值范围是
4.为了响应“绿水青山就是金山银山”的号召,加强生态文明建设,某工厂自今年1月份开始限产进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是( )
A.治污改造完成后每月利润比前一个月增加30万元
B.治污改造完成前后共有5个月的利润不超过100万元
C.10月份该厂利润达到190万元
D.4月份的利润为50万元
5.某玩具厂计划生产一种玩具熊猫,已知每只玩具熊猫的成本为y元,若该厂每月生产只(取正整数),这个月的总成本为5000元,则y与x之间满足的关系为( )
A. B.
C. D.
6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压(单位:千帕)随气球内气体的体积(单位:立方米)的变化而变化,随的变化情况如下表所示,那么在这个温度下,气球内气体的气压P与气球内气体的体积的函数关系最可能是
(单位:立方米)
64
48
38.4
32
24
…
(单位:千帕)
1.5
2
2.5
3
4
…
A.正比例函数 B.一次函数 C.二次函数 D.反比例函数
7.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的与的数据如表:
时间分钟
含药量毫克
则下列图象中,能表示与的函数关系的图象可能是( )
A. B.
C. D.
8.两个物体A,B所受的压强分别为,(都为常数).它们所受压力F与受力面积S的函数关系图象分别是射线、,已知压强,则( )
A. B. C. D.
9.已知甲、乙两地相距s(单位:km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(单位:h)关于行驶速度v(单位:km/h)的函数图象是( )
A. B. C. D.
10.在显示汽车油箱内油量的装置模拟示意图中,电压一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积与电路中总电阻是反比例关系,电流与也是反比例关系,则与的函数关系是( )
A.反比例函数 B.正比例函数 C.二次函数 D.以上答案都不对
11.古希腊学者阿基米德发现了著名的“杠杆原理”:杠杆平衡时,阻力×阻力臂=动力×动力臂.几位同学玩撬石头游戏,已知阻力(石头重量)和阻力臂分别为1600N和0.5m,小明最多能使出500N的力量,若要撬动这块大石头,他该选择撬棍的动力臂( )
A.至多为 B.至少为 C.至多为 D.至少为
12.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,其图像经过点A(如图).当气球内的气压大于144kPa时,气球将爆炸,为确保气球不爆炸,该气球的体积应( )
A.不大于 B.不小于 C.不大于 D.不小于
13.一司机驾驶汽车从甲地去乙地,他以80km/h的平均速度用2h到达目的地,当他按原路匀速返回时,汽车的速度v与时间t的函数关系是( )
A. B. C. D.
14.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点在其图象上,则当力达到10N时,物体在力的方向上移动的距离是( )
A.2.4m B.1.2m C.1m D.0.5m
15.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)与该校参加竞赛人数的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )
A.甲 B.乙 C.丙 D.丁
16.木板对地面的压强P(Pa)是木板面积S(m2)的反比例函数,其图象如图所示,当压强不超过400 Pa时,木板的面积应( )
A.不大于1.5 m2 B.不小于1.5 m2
C.不大于m2 D.不小于m2
17.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温和时间的关系如图所示,水温从100℃降到50℃所用的时间是( )
A.7分钟 B.13分钟 C.20分钟 D.27分钟
18.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种蔬菜.上图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图像,其中BC段是双曲线(k≠0)的一部分,则当x = 16时,大棚内的温度约为( )
A.18℃ B.15.5℃ C.13.5℃ D.12℃
二、填空题
19.在对物体做功一定的情况下,力与此物体在力的方向上移动的距离成反比例函数关系,其图象如图所示,则当力达到时,此物体在力的方向上移动的距离是________.
20.已知近视眼镜的度数D(度)与镜片焦距f(米)成反比例关系,且度近视眼镜镜片的焦距为米.小慧原来戴度的近视眼镜,经过一段时间的矫正治疗后,现在只需戴镜片焦距为米的眼镜了,则现在小慧所戴的眼镜为 ____度.
21.如表记录了一组物理试验数据,已知当温度不变时,气球内气体的压强(单位:)是气体体积(单位:)的函数,则与的函数关系式是______.
(单位:)
(单位:)
22.你吃过兰州拉面吗?实际上做拉面的过程渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条粗细(横截面积)的反比例函数,假设其图象如图所示,则与之间的函数表达式为________.
23.如图,某校园艺社计划利用已有的一堵长为10m的墙,用篱笆围一个面积为12m2的矩形园子.
(1)设矩形园子的相邻两边长分别为xm,ym,y关于x的函数表达式为 _____(不写自变量取值范围);
(2)当y≥4m时,x的取值范围为 _____;
(3)当一条边长为7.5m时,另一条边的长度为 _____m.
24.一辆汽车前灯电路上的电压U(V)保持不变,选用灯泡的电阻为R(Ω),通过的电流强度为I(A),由欧姆定律可知,I.当电阻为40Ω时,测得通过的电流强度为0.3A.为保证电流强度不低于0.2A且不超过0.6A,则选用灯泡电阻R的取值范围是____.
25.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进.但实际上走出的是一个大圆圈,这就是有趣的“瞎转圈”现象,经研究,某人蒙上眼睛走出的大圆圈的半径y(米)是其两腿迈出的步长之差x(厘米)()的反比例函数,其图象如图所示.若此人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是___厘米.
26.列车从甲地驶往乙地.行完全程所需的时间与行驶的平均速度之间的反比例函数关系如图所示.若列车要在内到达,则速度至少需要提高到__________.
27.琪琪同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.
(1)y与x之间的函数关系式为________;x取值范围是________.
(2)当x的值为6,8,10时,对应的函数值分别为,比较与的大小:________.
28.小宇每天骑自行车上学,从家到学校所需时间(分)与骑车速度(千米/分)关系如图所示.一天早上,由于起床晚了,为了不迟到,需不超过分钟赶到学校,那么他骑车的速度至少是__________千米/分.
29.某八年级学生在参与“学雷锋微博帮忙团”活动中,除5名“特困”学生未捐款外,其余学生共向灾区人民捐款4000元,则平均每人捐款y(元)与该年级学生人数x(人)之间的函数关系为________________.
30.李老师参加了某电脑公司推出的分期付款(无利息)购买电脑活动,他购买的电脑价格为9800元,交了首付之后每月付款y元,x个月结清余款,y与x满足如图的函数解析式,通过以上信息可知李老师的首付款为_______.
三、解答题
31.小明在某一次实验中,测得两个变量之间的关系如下表所示:
x
1
2
3
4
12
y
12.03
5.98
3.03
1.99
1.00
请你根据表格回答下列问题:
①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由;
②请你写出这个函数的解析式;
③表格中空缺的数值可能是多少?请你给出合理的数值.
32.某商场出售一批进价为2元的贺卡,在市场营销中发现,此种贺卡的销售单价x(单位:元)与日销售量y(单位:张)之间有如下关系:
销售单价x(元)
3
4
5
6
日销售量y(张)
20
15
12
10
(1)根据表中数据在平面直角坐标系中描出实数对的对应点;
(2)确定y与x之间的函数关系式,并画出图象;
(3)设此种贺卡的日销售利润为w元,试求出w与x之间的函数关系式.若物价局规定此种贺卡的售价最高不超过10元/张,请你求出销售单价x定为多少元时,才能获得最大日销售利润?并求出最大日销售利润.
33.电灭蚊器的电阻y()随温度x()变化的大致图象如图所示,通电后温度由室温上升到时,电阻与温度成反比例函数关系,且在温度达到时,电阻下降到最小值,随后电阻随温度升高而增加,温度每上升,电阻增加.
(1)当时,求y与x之间的关系式;
(2)电灭蚊器在使用过程中,温度x在什么范围内时,电阻不超过?
34.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中、分别为线段,为双曲线的一部分):
(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?请说明理由.
35.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度与时间之间的函数关系,其中线段、表示恒温系统开启阶段,双曲线的一部分表示恒温系统关闭阶段.请根据图中信息解答下列问题:
(1)求这天的温度y与时间的函数关系式;
(2)若大棚内的温度低于时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
36.汽车从甲地开往乙地,记汽车行驶时间为小时,平均速度为千米/小时(汽车行时速度不超过千米/小时),根据经验,,的一组对应值如下表;
(千米/小时)
(小时)
(1)根据表中的数据,分析说明平均速度(千米/小时)关于行驶时间(小时)的函数关系,并求出其表达式;
(2)汽车上午从甲地出发,能否在上午之前到达乙地?请说明理由.
37.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标随时间(分钟)变化的函数图象如图所示,当和时,图象是线段,当时,图象是反比例函数的一部分.
(1)求点对应的指标值.
(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.
38.喝茶前需要烧水和泡茶两个工序,电热水壶将水烧到100℃,然后继续加热1分钟后断电,烧水时水温y(℃)与时间成一次函数关系;断电后,水壶中水的温度(℃)与时间近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.
(1)分别求出图中AB段和CD段所对应的函数关系式;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡茶,问从水烧开到泡茶需要等待多长时间?
39.如图,某校劳动小组计划利用已有的一堵长为6m的墙,用篱笆围成一个面积为的矩形劳动基地,边的长不超过墙的长度,在边上开设宽为1m的门(门不需要消耗篱笆).设的长为(m),的长为(m).
(1)求关于的函数表达式.
(2)若围成矩形劳动基地三边的篱笆总长为10m,求和的长度
(3)若和的长都是整数(单位:m),且围成矩形劳动基地三边的篱笆总长小于10m,请直接写出所有满足条件的围建方案.
40.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要24min;完成2间办公室和1间教室的药物喷洒要14min.
(1)求校医完成一间办公室和一间教室的药物喷洒各要多少时间?
(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为:y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十班教室(共10间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.
参考答案
1.C
2.C
3.D
4.B
5.C
6.D
7.D
8.B
9.C
10.B
11.B
12.B
13.D
14.B
15.C
16.B
17.A
18.C
19.1
20.
21.
22.
23. y 1.2≤x≤3 1.6
24.
25.0.4
26.240
27. ; x为的整数; >.
28.
29.y=(x>5)
30.3800元
31.解:(1)由表中自变量x和因变量y的数值可知:
自变量x和因变量y的乘积都大约等于12,且随着自变量x值的逐渐增加,因变量y的值逐渐减少,
故两个变量x和y之间可能是反比例函数关系.
(2)∵两自变量的乘积等于12,
且两自变量为反比例函数关系,
∴;
(3)将代入得:;
将代入得:.
故表格中x的空值填6,y的空值填4.
32.(1)解:建立平面直角坐标系描点,如图所示:
(2)解:由题意设y与x之间的函数关系式为(且k为常数),把代入,得,
将,,分别代入,均成立,
所以y与x之间的函数关系式为,
画出的图象如上图所示;
(3)解:,
当时,w随x的增大而增大,
又因为,
所以当时,,
所以,销售单价x定为10元时,才能获得最大日销售利润,最大日销售利润为 48元.
33.(1)解:当时,设y与x之间的关系式为,
根据题意得:该函数图象过点,
∴.
∴当时,y与x的关系式为:;
(2)解:∵,
∴当时,.
根据题意得:该函数图象过点,
∵温度每上升,电阻增加.
∴该函数图象过点,
∴,解得:,
∴当时,y与x的关系式为:;
对于当时,;
对于当时,;
答:温度x取值范围是时,电阻不超过.
34.(1)设线段所在直线的解析式为,
把代入得,
∴,
∴,
设,所在双曲线的解析式为,
把代入得,
∴.
当时,;
当时,.
∴.
∴第30分钟学生的注意力更集中;
(2)能
令,则,
∴.
令,则,
∴.
∵,
∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目
35.(1)解:设线段解析式为
∵线段过点,,
∴,解得
∴线段的解析式为:
∵B在线段上当时,,
∴B坐标为,
∴线段的解析式为:,
设双曲线解析式为:
∵,
∴,
∴双曲线的解析式为:
∴y关于x的函数解析式为:
(2)把代入中,解得:,
∴(小时),
∴恒温系统最多可以关闭10小时,蔬菜才能避免受到伤害.
36.(1)解:∵,,即每一对与的对应值乘积为一定值,在减小,在增大,
∴与成反比关系,设,
把,代入反比例函数得,,
∴与的表达式为,
∵汽车行时速度不超过千米/小时,
∴,
∴,
∴平均速度(千米/小时)关于行驶时间(小时)的函数关系是反比例函数,表达式为.
(2)解:∵(小时),
∴(千米/小时),
∵汽车行时速度不超过千米/小时,,
∴不能.
37.(1)解:设反比例函数为,由图可知点在的图象上,
∴,
∴
将代入得:点对应的指标值为
(2)(2)设直线的解析式为,将、代入中,
得,解得
∴直线的解析式为
①当时,
解得:,
②当时,45>30,显然注意力指标高于30,
③当时,,
解得:,
综上所述:
∴注意力指标不低于30的高效时间段是上课4分钟到30分钟之间.
38.(1)解:停止加热时,设,
由题意得:50= ,
解得:k=900,
∴y=,
当y=100时,解得:x=9,
∴C点坐标为(9,100),
∴B点坐标为(8,100),
当加热烧水时,设y=ax+20,
由题意得:100=8a+20,
解得:a=10,
∴当加热烧水,函数关系式为y=10x+20(0≤x≤8);
当停止加热,得y与x的函数关系式为y=100(8<x≤9);y=(9<x≤45);
(2)把y=80代入y=,得,
因此从烧水开到泡茶需要等待分钟.
39.(1)解:依题意得:xy=12,
∴.
又∵墙长为6m,
∴,
∴.
∴y关于x的函数表达式为:.
(2)解:依题意得:,
∴或,
∵,
∴,
∴;
(3)解:依题意得:,,
∴,
∵和的长都是正整数,
∴或,
∴则满足条件的围建方案为:或
40.(1)设完成一间办公室和一间教室的药物喷洒各要x min和y min,
则 ,
解得:,
故校医完成一间办公室和一间教室的药物喷洒各要4min和6min;
(2)一间教室的药物喷洒时间为6min,则10个房间需要60min,
当x=6时,y=2x=12,
故点A(6,12),
设反比例函数表达式为:y,
将点A的坐标代入上式并解得:k=72,
故反比例函数表达式为 ,
当x=60时, 1.2>1,
故一班学生不能安全进入教室.
相关资料
更多