![2023年人教版数学八年级下册《平行四边形》期末巩固练习(含答案)01](http://img-preview.51jiaoxi.com/2/3/14405835/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年人教版数学八年级下册《平行四边形》期末巩固练习(含答案)02](http://img-preview.51jiaoxi.com/2/3/14405835/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年人教版数学八年级下册《平行四边形》期末巩固练习(含答案)03](http://img-preview.51jiaoxi.com/2/3/14405835/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年人教版数学八年级下册《平行四边形》期末巩固练习(含答案)
展开2023年人教版数学八年级下册
《平行四边形》期末巩固练习
一 、选择题
1.如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )
A.155° B.130° C.125° D.110°
2.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE度数为( )
A.20° B.25° C.30° D.35°
3.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为( )
A.它们周长都等于10cm,但面积不一定相等
B.它们全等,且周长都为10cm
C.它们全等,且周长都为5cm
D.它们全等,但周长和面积都不能确定
4.如图,有一▱ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为( )
A.50° B.55° C.70° D.75°
5.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )
A. B. C. D.
6.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH,HF,FG,GE,则下列结论中,不一定正确的是( )
A.△EGH为等腰三角形 B.△EHF为等腰三角形
C.四边形EGFH为菱形 D.△EGF为等边三角形
7.已知四边形ABCD,有以下四个条件:①AB//CD;②AB=CD;③BC//AD;④BC=AD.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( ).
A.6种 B.5种 C.4种 D.3种
8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒 cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1 cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t s,若四边形QPCP′为菱形,则t的值为( )
A. B.2 C.2 D.3
9.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为( )
A.15 B.12.5 C.14.5 D.17
10.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于( )
A.1: B.1:2 C.2:3 D.4:9
二 、填空题
11.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为 m.
12.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为 .
13.如图,加一个条件 与∠A+∠B=180°能使四边形ABCD成为平行四边形.
14.如图,在扇形中,∠AOB=900,C是弧AB上一点,且CD⊥OB,CE⊥OA,垂足分别为点D、E,软弱BD=1,OD=3,则DE= .
15.如图,两个正方形的边长分别为a和b,如果a﹣b=﹣,ab=2,那么阴影部分的面积是 .
16.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C﹣>G﹣>A的顺序沿菱形的边循环运动,行走2025米停下,则这个微型机器人停在 点.
三 、解答题
17.如图所示,在▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:
(1)AE=CF;
(2)四边形AECF是平行四边形.
18.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.
(1)求证:四边形AECF是平行四边形.
(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有的等腰三角形.
19.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.
求证:AF⊥DE.
20.如图,在正方形ABCD中,F为DC的中点,E为BC上一点,BC=4CE.
求证:AF⊥FE.
21.如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,
(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;
(2)如果AB=7,BE=4.求线段BO的取值范围.
22.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
23.(1)如图①,已知△ABC,以AB,AC为边向△ABC外作等边△ABD和等边△ACE,连结BE,CD.请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹)
(2)如图②,已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE,连结BE,CD.BE与CD有什么数量关系?简单说明理由;
(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100 m,AC=AE,求BE的长.
答案
1.B.
2.C.
3.B.
4.C.
5.D.
6.D.
7.C
8.B
9.B
10.D.
11.答案为:40.
12.答案为:5
13.答案为AD=BC或AB∥CD.
14.答案为:4.
15.答案为:4﹣.
16.答案为:B.
17.证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF.
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
(2)如图,连接AC,与BD相交于点O.
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
又∵BE=DF,
∴OB﹣BE=OD﹣DF,
∴OE=OF.
∴四边形AECF是平行四边形.
18.证明:(1)如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,
∵BE=DF,
∴OB﹣BE=OD﹣DF,即OE=OF,
∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);
(2)解:∵AB∥CD,
∴∠ABF=∠CDF=36°,
∴∠AFB=180°﹣108°﹣36°=36°,
∴AB=AF,
∵AF=EF,
∴△ABF和△AFE是等腰三角形,
同理△EFC与△CDE是等腰三角形.
19.证明:∵四边形ABCD为正方形,
∴AD=DC,∠ADC=∠C=90°,
在Rt△ADF与Rt△DCE中,
AF=DE,AD=CD,
∴Rt△ADF≌Rt△DCE(HL)
∴∠DAF=∠EDC
设AF与ED交于点G,
∴∠DGF=∠DAF+∠ADE=∠EDC+∠ADE=∠ADC=90°
∴AF⊥DE.
20.证明:连接AE,设正方形的边长为 4a.
在Rt△ADF中,AD=4a,DF=2a,
据勾股定理得,AF2=AD2+DF2,解得AF2=20a2.
在Rt△ABE中,AB=4a,BE=3a,
据勾股定理得,AE2=AB2+BE2,解得AE2=25a2.
在Rt△ECF中,FC=2a,CE=a,
据勾股定理得,EF2=CF2+CE2,解得EF2=5a2.
∴AE2=AF2+EF2,
∴AF⊥FE.
21.解:(1)猜想:平行且相等
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∴BO=DO,AO=CO,
∵点E、点F分别是OA、OC的中点,
∴OE=OF,
∵在△DOF和△BOE中,
DO=BO,∠BOE=∠DOF,OF=OE,
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;
(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
22.证明:(1)连接AC,如下图所示,
∵四边形ABCD为菱形,∠BAD=120°,
∠1+∠EAC=60°,∠3+∠EAC=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC和△ACD为等边三角形,
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA).
∴BE=CF;
(2)解:四边形AECF的面积不变,△CEF的面积发生变化.
理由:由(1)得△ABE≌△ACF,则S△ABE=S△ACF,
故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,
作AH⊥BC于H点,则BH=2,
S四边形AECF=S△ABC=BC•AH=4,
由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.
故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,
又S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大.
∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×3=.
答:最大值是.
23.解:(1)如答图①,证明:∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,
即∠CAD=∠EAB,
∴△CAD≌△EAB,
∴BE=CD;
(2)BE=CD.理由如下:
∵四边形ABFD和四边形ACGE均为正方形,
∴AD=AB,AC=AE,∠BAD=∠CAE=90°,
∴∠CAD=∠EAB,
∴△CAD≌△EAB,
∴BE=CD;
(3)由(1),(2)的解题经验可知,过A在△ABC的外侧作等腰直角三角形ABD,
如图②,∠BAD=90°,则AD=AB=100,∠ABD=45°,
∴BD=100.
连结CD,则由(2)可知BE=CD.
∵∠ABC=45°,
∴∠DBC=∠ABD+∠ABC=90°.
在Rt△DBC中,BC=100,BD=100,
∴CD==100,
∴BE的长为100m.
2023年北师大版数学八年级下册《平行四边形》期末巩固练习(含答案): 这是一份2023年北师大版数学八年级下册《平行四边形》期末巩固练习(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙教版数学八年级下册《特殊平行四边形》期末巩固练习(含答案): 这是一份2023年浙教版数学八年级下册《特殊平行四边形》期末巩固练习(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙教版数学八年级下册《平行四边形》期末巩固练习(含答案): 这是一份2023年浙教版数学八年级下册《平行四边形》期末巩固练习(含答案),共13页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。