押题预测卷09(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用)
展开决胜2023年高考数学考前押题预测卷09
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A. B. C. D.
2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数(其中)为“等部复数”,则复数在复平面内对应的点在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
3.已经连续抛掷一枚质地均匀的硬币2次,都出现了正面向上的结果,第3次随机地抛掷这枚硬币,则其正面向上的概率为( )
A. B. C. D. 1
4.在平面直角坐标系中,已知点为角终边上一点,若,则( )
A. B. C. D.
5.当个相同的声强级为的声源作用于某一点时,就会产生声强级的叠加,叠加后的声强级,已知一台电锯工作时的声强级是,则10台电锯工作时的声强级与台电锯工作时的声强级的关系约为( )(参考数据:)
A. B. C. D.
6.已知,则( )
A. -1 B. 0 C. 1 D. 2
7.已知函数f(x)的定义域为R,且,,当时,,则)=( )
A. B. C. D.
8.已知四棱锥外接球表面积为,体积为平面,且,则的取值范围是( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9.下列说法正确的的有( )
A. 已知一组数据的方差为, 则的方差也为
B. 对具有线性相关关系的变量,其线性回归方程为,若样本点的中心为,则实数的值是-4
C. 已知随机变量服从正态分布,若,则
D. 已知随机变量服从二项分布,若,则
10.已知函数,下列结论正确的是( )
A. 的最小正周期为
B. 是的最大值
C. 把函数的图象上所有点向左平移个单位长度,可得到函数的图象
D. 时,的最小值为,的最大值为1
11.设同时为椭圆与双曲线的左右焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,若( )
A.,则
B.,则
C.,则的取值范围是
D.,则的取值范围是
12.若函数有两个极值点,且,则下列结论正确的是( )
A. B. C. D.
三、填空题:本题共4小题,每小题5分,共20分.
13.已知非零向量 满足,且向量在向量方向的投影向量是,则向量与的夹角是__________.
14.已知直线l经过点,且被圆截得的弦长为6,则直线l的方程是__________.
15.某市统计高中生身体素质的状况,规定身体素质指标值不小于60就认为身体素质合格.现从全市随机抽取 100名高中生的身体素质指标值, 经计算,.若该市高中生的身体素质指标值服从正态分布,则估计该市高中生身体素质的合格率为______.(用百分数作答,精确到0.1%)
参考数据:若随机变量X服从正态分布,则,,.
16.“数列”是每一项均为或的数列,在通信技术中应用广泛.设是一个“数列”,定义数列:数列中每个都变为“”,中每个都变为“”,所得到的新数列.例如数列,则数列.已知数列,且数列,,记数列的所有项之和为,则__________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.记数列的前n项和为,对任意,有.
(1)证明:是等差数列;
(2)若当且仅当时,取得最大值,求的取值范围.
18.某地区的疾控机构为了考察药物A对某疾病的预防效果,在该地区随机抽取96人,调查得到的统计数据如下表所示.
| 患病 | 未患病 | 合计 |
服用约物A | 10 | 38 | 48 |
未服用约物A | 22 | 26 | 48 |
合计 | 32 | 64 | 96 |
(1)试判断:是否有99%以上的把握认为药物A对预防该疾病有效果?
(2)已知治愈一位服用药物A的该疾病患者需要2个疗程,治愈一位未服用药物A的该疾病患者需要3个疗程.从该地区随机抽取1人,调查其是否服用药物A、是否患该疾病,若未患病,则无需治疗,若患病,则对其进行治疗并治愈.求所需疗程数的数学期望.
附:(其中),.
19.如图,正三棱柱中,,点M为的中点.
(1)在棱上是否存在点Q,使得AQ⊥平面?若存在,求出的值;若不存在,请说明理由:
(2)求点C到平面的距离.
20.如图,平面四边形ABCD中,,,.的内角A,B,C的对边分别为a,b,c,且满足.
(1)求四边形ABCD的外接圆半径R;
(2)求内切圆半径r的取值范围.
21.已知抛物线与都经过点.
(1)若直线与都相切,求的方程;
(2)点分别在上,且,求的面积.
22.已知函数,为的导数.
(1)若为的零点,试讨论在区间的零点的个数;
(2)当时,,求实数m的取值范围.
押题预测卷02(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用): 这是一份押题预测卷02(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
押题预测卷07(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用): 这是一份押题预测卷07(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
押题预测卷08(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用): 这是一份押题预测卷08(原卷版)决胜2023年高考数学押题必刷仿真模拟卷(新高考地区专用),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。