![中考数学三轮冲刺《三角形》解答题冲刺练习06(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14287620/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学三轮冲刺《三角形》解答题冲刺练习06(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/14287620/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学三轮冲刺《三角形》解答题冲刺练习06(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/14287620/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:中考数学三轮冲刺《三角形》解答题冲刺练习 (含答案)
中考数学三轮冲刺《三角形》解答题冲刺练习06(含答案)
展开
这是一份中考数学三轮冲刺《三角形》解答题冲刺练习06(含答案),共9页。试卷主要包含了5,sinA=0,5,等内容,欢迎下载使用。
中考数学三轮冲刺《三角形》解答题冲刺练习061.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长. 2.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长. 3.如图,已知在△ABC中,点D、E、F分别在AC、AB、BC边上,且四边形CDEF是正方形,AC=3,BC=2,求△ADE、△EFB、△ACB的周长之比和面积之比. 4.如图,在正方形ABCD中,E是对角线BD上任意一点(BE>DE),CE的延长线交AD于点F,连接AE.(1)求证:△ABE∽△FDE;(2)当BE=3DE时,求tan∠1的值. 5.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,4DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长. 6.如图,在△ABC中,D为AB边上一点、F为AC的中点,过点C作CE∥AB交DF的延长线于点E,连结AE.(1)求证:四边形ADCE为平行四边形.(2)若EF=2,∠FCD=30°,∠AED=45°,求DC的长. 7.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E. (1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明BF=2CE. 8.台风是一种自然灾害,它以台风中心为圆心,在周围数千米范围内形成气旋风暴,有极强的破坏力.根据气象观测,距沿海某城市A的正南方向220 km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20 km,风力就会减弱一级.该台风中心正以15 km/h的速度沿北偏东30°方向往C处移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称受台风影响.该城市是否受到该台风的影响?请说明理由. 9.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长. 10.如图,四边形ABCD、CDEF、EFGH都是正方形.(1)△ACF与△ACG相似吗?说说你的理由.(2)求∠1+∠2的度数. 11.如图,在△ABC中,CD为中线,tanB=0.5,sinA=0.6,CA=10,求cos∠ADC的值. 12.△ABC是边长为3等边三角形,点E,点F分别在AC、BC边上,连结AF、BE相交于点P,∠APE=60°.(1)求证:△APE∽△ACF.(2)若AE=1,求AP•AF的值.(3)当P点处于线段BE什么位置时,△APE的面积等于四边形CFPE的面积?
0.中考数学三轮冲刺《三角形》解答题冲刺练习06(含答案)答案解析 一 、解答题1.证明:(1)∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中BD=CD,BE=CF.∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12. 2.解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,∴AD=. 3.略4.证明:(1)在正方形ABCD中,∵AB=BC,∠ABE=∠CBE=∠FDE=45°,在△ABE与△CBE中,∴△ABE≌△CBE,∴∠BAE=∠ECB,∵AD∥BC,∴∠DFE=∠BCE,∴∠BAE=∠DFE,∴△ABE∽△FDE;(2)连接AC交BD于O,设正方形ABCD的边长为a,∴BD=a,BO=OD=OC=a,∵BE=3DE,∴OE=OD=a,∴tan∠1=tan∠OEC=. 5.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10. 6.证明:(1)∵CE∥AB,∴∠DAF=∠ECF.∵F为AC的中点,∴AF=CF.在△DAF和△ECF中∴△DAF≌△ECF.∴AD=CE.∵CE∥AB,∴四边形ADCE为平行四边形.(2)作FH⊥DC于点H.∵四边形ADCE为平行四边形.∴AE∥DC,DF=EF=2,∴∠FDC=∠AED=45°.在Rt△DFH中,∠DHF=90°,DF=2,∠FDC=45°,∴sin∠FDC=,得FH=2,tan∠FDC=1,得DH=2.在Rt△CFH中,∠FHC=90°,FH=2,∠FCD=30°,∴FC=4.由勾股定理,得HC=2.∴DC=DH+HC=2+2. 7.解:(1)△DBC是等腰直角三角形,理由:∵∠ABC=45°,CD⊥AB,∴∠BCD=45°,∴BD=CD,∴△DBC是等腰直角三角形;(2)∵BE⊥AC,∴∠BDC=∠BEC=90°,∵∠BFD=∠CFE,∴∠DBF=∠DCA,在△BDF与△CDA中,错误!未找到引用源。,∴△BDF≌△CDA(ASA),∴BF=AC;(3)∵BE是AC的垂直平分线,∴AC=2CE,∴BF=2CE. 8.解:受到台风的影响.理由如下:如解图,过点A作AC⊥BC于点C.由题意,得AB=220 km,∠ABC=30°,∴AC=AB=110 km.∵110÷20=5.5,∴12﹣5.5=6.5>4.∴该城市受到该台风的影响. 9.证明:(1)∵AE∥BC,∴∠B=∠DAE,∠C=∠CAE.∵AE平分∠DAC,∴∠DAE=∠CAE.∴∠B=∠C.∴AB=AC.∴△ABC是等腰三角形.(2)∵F是AC的中点,∴AF=CF.∵AE∥BC,∴∠C=∠CAE.由对顶角相等可知:∠AFE=∠GFC.在△AFE和△CFG中,∴△AFE≌△CFG.∴AE=GC=8.∵GC=2BG,∴BG=4.∴BC=12.∴△ABC的周长=AB+AC+BC=10+10+12=32. 10.略11.【解答】解:作CE⊥AB于E,如图所示,∵sinA==,CA=10,∴CE=0.6×10=6,∴AE===8,∵tanB==,∴BE=2CE=12,∴AB=BE+AE=20,∵CD为中线,∴AD=10,∴DE=AD﹣AE=10﹣8=2,∴CD===2,∴cos∠ADC===. 12.解:(1)∵△ABC是等边三角形,∴∠C=60°,∵∠APE=60°,∴∠C=∠APE,∵∠PAE=∠CAF,∴△APE∽△ACF;(2)∵△APE∽△ACF,∴,∵AC=3,AE=1,∴AP•AF=3;(3)∵∠APE=∠ABP+∠BAP=60°,∠BAP+EAP=60°,∴∠ABP=∠EAP,∵△ABC是等边三角形,∴∠C=∠BAC=60°,AB=AC,在△AFC与△BEA中,,∴△AFC≌△BEA,∴S△APC=S△BEA,∴S△ABP=S四边形CFPE,若S△APE=S四边形CFPE,则S△ABP=S△APE,∴BP=EP,即P是BE的中点.
相关试卷
这是一份中考数学三轮冲刺《三角形》解答题冲刺练习05(含答案),共9页。
这是一份中考数学三轮冲刺《三角形》解答题冲刺练习03(含答案),共8页。
这是一份中考数学三轮冲刺《四边形》解答题冲刺练习06(含答案),共9页。试卷主要包含了E为CD边上一点,CE=6等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)