终身会员
搜索
    上传资料 赚现金
    英语朗读宝
    立即下载
    加入资料篮
    数学七年级下册5.1.1 相交线 1第1页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版七年级下册5.1.1 相交线综合训练题

    展开

    这是一份人教版七年级下册5.1.1 相交线综合训练题,共3页。试卷主要包含了1.1 相交线,故答案为90;等内容,欢迎下载使用。

    1.理解对顶角和邻补角的概念,能在图形中辨认;(重点)
    2.掌握对顶角相等的性质和它的推证过程;(重点、难点)
    3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
    一、情境导入
    同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?
    二、合作探究
    探究点一:对顶角和邻补角的概念
    【类型一】 对顶角的识别
    下列图形中∠1与∠2互为对顶角的是( )
    解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.
    方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.
    【类型二】 邻补角的识别
    如图所示,直线AB和CD相交所成的四个角中,∠1的邻补角是________.
    解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.
    方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.
    探究点二:对顶角的性质
    【类型一】 利用对顶角的性质求角的度数
    如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.
    解析:根据对顶角的性质,可得∠AOC与∠BOD的关系,根据OA平分∠COE,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.
    解:由对顶角相等得∠AOC=∠BOD=42°.∵OA平分∠COE,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°.
    方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.
    【类型二】 结合方程思想求角度
    如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=eq \f(1,2)∠EOC,∠DOE=72°,求∠AOF的度数.
    解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.
    解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=eq \f(1,2)∠AOB=90°-eq \f(3,2)x.∵∠DOE=72°,∴90°-eq \f(3,2)x+x=72°,解得x=36°.∴∠AOF=2x=72°.
    方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.
    【类型三】 应用对顶角的性质解决实际问题
    如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.
    解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.
    解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.
    方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.
    探究点三:与对顶角有关的探究问题
    我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……
    (1)10条直线交于一点,对顶角有________对;
    (2)n(n≥2)条直线交于一点,对顶角有________对.
    解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有eq \f((4-2)×4,4)=2对对顶角;如图②,三条直线交于一点,图中共有eq \f((6-2)×6,4)=6对对顶角;如图③,四条直线交于一点,图中共有eq \f((8-2)×8,4)=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有eq \f((20-2)×20,4)=90(对).故答案为90;
    (2)利用(1)中规律得出答案即可.由(1)得n(n≥2)条直线交于一点,对顶角的对数为eq \f(2n(2n-2),4)=n(n-1).故答案为n(n-1).
    方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.
    三、板书设计
    两条直线相交eq \b\lc\{\rc\}(\a\vs4\al\c1(邻补角,对顶角,对顶角相等))求角的大小
    本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展

    相关试卷

    人教版七年级下册5.1.1 相交线习题:

    这是一份人教版七年级下册5.1.1 相交线习题,共13页。试卷主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,板书设计,教学反思等内容,欢迎下载使用。

    初中5.1.1 相交线课时练习:

    这是一份初中5.1.1 相交线课时练习,共2页。试卷主要包含了如图,已知直线a,b 相交等内容,欢迎下载使用。

    初中5.1.1 相交线同步练习题:

    这是一份初中5.1.1 相交线同步练习题,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map