人教版数学五年级上册《期中复习》知识点梳理
展开五年级上册数学期中知识点梳理
第一单元知识点
1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:
(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。
(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。
(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。
2、一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3、求积的近似数:先求出积,再根据需要求近似数。 求近似数的方法一般有三种:
⑴四舍五入法 (常用) ; ⑵进一法; ⑶去尾法。后两种多用于解决实际问题求近似数中。
4、计算钱数,保留两位小数,表示精确到分。保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。)
6、运算定律和性质:
方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。)
整数乘法的交换律、结合律和分配律,同样适用于小数乘法。
常见乘法计算(敏感数字):
25×4=100 125×8=1000
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
乘法:乘法交换律:a×b=b×a
乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变.
(a×b)×c=a×(b×c)
乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b×c
或 (a-b)×c=a×c-b×c
减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。
a-b-c=a-(b+c) a-b--c=a-c-b
除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。
a÷b÷c=a÷(b×c) a÷b÷c=a÷c÷b
去括号:加减(乘除)混合时, 括号前是加号(乘号)的,去掉括号后,括号内的符号不变号;括号前是减号(除法)的,去掉括号后,括号内的符号要变号。
a+(b-c)=a+b-c a-(b-c)=a-b+c
a (b÷c)=ab÷c a÷(b÷c)=a÷b×c
加法交换律
0.75+9.8+0.25
= 0.75+0.25+9.8
= 1+9.8
= 10.8
加法结合律
48.5+0.4+0.6
=48.5+(0.4+0.6)
=48.5+1
=49.5
乘法交换律:
2.5×5.6×0.4
= 2.5×0.4×5.6
= 1×5.6
= 5.6
乘法结合律:
99×12.5×0.8
= 99×(12.5×0.8)
= 99×10
= 990
加法交换律与结合律
6.5+0.28+3.5+0.72
=(6.5+3.5)+(0.28+0.72)
=10+1
=11
乘法交换律与结合律
2.5×1.25×0.4×0.8
=(2.5×0.4)×(1.25×0.8 )
= 1×1
=1
乘法分配律(提取式)
1.35×12-1.35×2
= 1.35×(12-2)
= 1.35×10
= 13.5
95.5÷1.6-15.5÷1.6
=(95.5-15.5)÷1.6
= 80÷1.6
= 50
乘法分配律(添项)
99×25.6+25.6
= 99×25.6+25.6 ×1
= 25.6 ×( 99+1)
= 25.6×100
= 2560
3.5×8 + 3.5×3-3.5
= 3.5×8 + 3.5×3-3.5×1
= 3.5×8 + 3.5×3-3.5×1
= 3.5×(8 + 3-1)
= 3.5×10
= 35
数字换加法
4.5×102
= 4.5×(100+2)
= 4.5×100+4.5×2
= 450+9
= 459
数字换减法
99×2.6
= (100-1)×2.6
= 100×2.6-1×2.6
= 260-2.6
= 257.4
数字换乘法
5.6×125
=(0.7×8)×125
= 0.7×(8×125)
= 0.7×1000
= 700
连减的性质:
同级运算中,第一个数不能动,后面的数可以带着符号搬家:
第二单元知识点
1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。
2.用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。
3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。
4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。
5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。
6.一组数对只能表示一个位置。
7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。
巧记位置
表示位置有绝招
一组数据把它标
竖线为列横为行
列先行后不可调
一列一行一括号
逗号分隔标明了
在方格纸上,物体向左或向右平移,行数不变,列数等于减去或加上平移的格数;
物体向上或向下平移,列数不变,行数等于加上或减去平移的格数。
切记
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定唯一一个点的位置,经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
3、在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
4、数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。
图形左右平移行数不变,图形上下平移列数不变。
第三单元知识点
1. 小数除法的计算方法
(1)除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
(2)小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商写上0,点上小数点。如果有余数,要添0再除。
(3)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
易错点:如果被除数的位数不够,在被除数的末尾用0补足。
2. 除法中的变化规律
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
3. 商的近似数
(1)准确数与近似数
①准确数:在日常生活和生产实际所遇到的数中,有时可以得到完全准确的数,他们精确,没有误差。如:五(1)班有学生46人,这里的46是准确数。
②近似数:由于实际中常常不需要用精确的数描述一个量,或不可能得到精确的数。如:中国约有13亿人,这里的13就是近似数。
(2)有效数字:一个近似数精确到哪一位,从左边第一个不是零的数算起,到这一位数字上,所有的数字,都叫做这个数的有效数字。例如:0.6166≈0.62,有两个有效数字:6、2。
(3)求商的近似数:一般先除到比需要保留的小数位数多一位,再按照“四舍五入”法取商的近似值。
易错点:其中小数末尾的“0”不能去掉。
4. 循环小数&用计算器探索规律
(1)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
(2)循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32。
(3)小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
5. 解决问题
(1)进一法:在取近似数的时候,不管省略部分最高位上的数字是几,都向前进1。用进一法得到的近似数比准确数大。
例:
保留一位小数15.24≈15.3
(2)去尾法:在取近似数的时候,不管省略部分最高位上的数字是几,都向舍去。用去尾法得到的近似数比准确数小。
例:
保留一位小数15.39≈15.3
第四单元知识点
1. 可能性
事件的发生有确定性和不确定性,确定的事件用“一定”或“不可能”来描述,不确定的事件用“可能”来描述。
2. 事件发生可能性的大小
可能性的大小与数量的多少有关,相同条件下,在总数中所占数量越多,可能性越大;所占数量越少,可能性越小。
人教版数学小学五年级下册《期中复习》知识点梳理: 这是一份人教版数学小学五年级下册《期中复习》知识点梳理,共10页。试卷主要包含了观察物体,因数和倍数等内容,欢迎下载使用。
人教版数学三年级上册《期末复习》知识点梳理: 这是一份人教版数学三年级上册《期末复习》知识点梳理,共15页。
人教版数学三年级上册《期中复习》知识点梳理(1): 这是一份人教版数学三年级上册《期中复习》知识点梳理(1),共4页。