所属成套资源:2023年中考数学二轮复习《二次函数压轴题》强化练习(含答案)
2023年中考数学二轮复习《压轴题-等腰直角三角形问题》强化练习(含答案)
展开
这是一份2023年中考数学二轮复习《压轴题-等腰直角三角形问题》强化练习(含答案),共22页。试卷主要包含了如图①,已知抛物线L等内容,欢迎下载使用。
2023年中考数学二轮复习《压轴题-等腰直角三角形问题》强化练习1.如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由. 2.如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式.(2)当点P在x轴上方时,结合图象,直接写出m的取值范围.(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.①求m的值.②以PA为边作等腰直角三角形PAQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标. 3.如图,已知抛物线y=ax2+bx+c与x轴相交于A,B两点,点C(2,﹣4)在抛物线上,且△ABC是等腰直角三角形.(1)求抛物线的解析式;(2)过点D(2,0)的直线与抛物线交于点M,N,试问:以线段MN为直径的圆是否过定点?证明你的结论. 4.已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围. 5.抛物线y=x2﹣(m+3)x+3m与x轴交于A、B两点,与y轴交于点C(不与点O重合).(1)若点A在x轴的负半轴上,且△OBC为等腰直角三角形.①求抛物线的解析式;②在抛物线上是否存在一点D,使得点O为△BCD的外心,若存在,请求出点D的坐标,若不存在,请说明理由.(2)点P在抛物线对称轴上,且点P的纵坐标为﹣9,将直线PC向下平移n(1≤n≤4)个单位长度得到直线P′C′,若直线P′C′与抛物线有且只有一个交点,求△ABC面积的取值范围. 6.如图,二次函数y=ax2+bx﹣3(x≤3)的图象过点A(﹣1,0),B(3,0),C(0,c),记为L.将L沿直线x=3翻折得到“部分抛物线”K,点A,C的对应点分别为点A',C'.(1)求a,b,c的值;(2)画出“部分抛物线”K的图象,并求出它的解析式;(3)某同学把L和“部分抛物线”K看作一个整体,记为图形“W”,若直线y=m和图形“W”只有两个交点M,N(点M在点N的左侧).①直接写出m的取值范围;②若△MNB为等腰直角三角形,求m的值. 7.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+6与x轴交于点A(﹣2,0)和点B(6,0),与y轴交于点C,顶点为D,联结BC交抛物线的对称轴l于点E.(1)求抛物线的表达式;(2)联结CD、BD,点P是射线DE上的一点,如果S△PDB=S△CDB,求点P的坐标;(3)点M是线段BE上的一点,点N是对称轴l右侧抛物线上的一点,如果△EMN是以EM为腰的等腰直角三角形,求点M的坐标. 8.抛物线y=x2﹣(m+3)x+3m与x轴交于A、B两点,与y轴交于点C.(1)如图1,若点A在x轴的负半轴上,△OBC为等腰直角三角形,求抛物线的解析式;(2)在(1)的条件下,点D(﹣2,5)是抛物线上一点,点M为直线BC下方抛物线上一动点,令四边形BDCM的面积为S,求S的最大值及此时点M的坐标;(3)若点P是抛物线对称轴上一点,且点P的纵坐标为﹣9,作直线PC,将直线PC向下平移n(n>0)个单位长度得到直线P'C',若直线P'C'与抛物线有且仅有一个交点.①直接写出n关于m的函数关系式;②直接写出当1≤n≤5时m的取值范围.
参考答案1.解:(1)∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE=S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点DM,交AE于点N,则E(2,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=+(舍)或﹣,∴P的坐标为(﹣,﹣);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=+(舍)或m2=﹣,∴P的坐标为(﹣,+);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=+或m2=﹣(舍);P的坐标为(+,﹣);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=+或﹣(舍),P的坐标为:(+,+);综上所述,点P的坐标是:(﹣,﹣)或(﹣,+)或(+,﹣)或(+,+).2.解:(1)将(1,0),(0,3)代入y=x2+bx+c得,解得,∴y=x2﹣4x+3.(2)令x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴交点坐标为(1,0),(3,0),∵抛物线开口向上,∴m<1或m>3时,点P在x轴上方.(3)①∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线顶点坐标为(2,﹣1),对称轴为直线x=2,当m>2时,抛物线顶点为最低点,∴﹣1=2﹣m,解得m=3,当m≤2时,点P为最低点,将x=m代入y=x2﹣4x+3得y=m2﹣4m+3,∴m2﹣4m+3=2﹣m,解得m1=+(舍),m2=﹣.∴m=3或m=﹣.②当m=3时,点P在x轴上,AP=2,∵抛物线顶点坐标为(2,﹣1),∴点Q坐标为(2,﹣1)或(2,1)符合题意.当m=﹣时,如图,∠QPA=90°过点P作y轴平行线,交x轴于点F,作QE⊥PF于点E,∵∠QPE+∠APF=∠APF+∠PAF=90°,∴∠QPE=∠PAF,又∵∠QEP=∠PFA=90°,QP=PA,∴△QEP≌△PFA(AAS),∴QE=PF,即2﹣m=m2﹣4m+3,解得m1=+(舍),m2=﹣.∴PF=2﹣﹣,AF=PE=1﹣﹣,∴EF=PF+PE=2﹣﹣+1﹣﹣=,∴点Q坐标为(2,).综上所述,点Q坐标为(2,﹣1)或(2,1)或(2,).3.解:连接AC、BC,过点C作CP垂直于x轴于点P.在Rt△CAB中,AC=BC,CP⊥AB,点C(2,﹣4),∴CP=AP=PB=4,OP=2,∴OA=AP﹣OP=4﹣2=2,OB=OP+PB=4+2=6,∴点A(﹣2,0),点B(6,0),把点A(﹣2,0),点B(6,0),点C(2,﹣4)代入函数解析式得,解得,∴抛物线的解析式为:y=x2﹣x﹣3.故答案为:y=x2﹣x﹣3.(2)设过点D(2,0)的直线MN解析式为y=k(x﹣2)=kx﹣2k,联立直线与抛物线解析式得关于x的等式:kx﹣2k=x2﹣x﹣3,化简得=0,xN+xM=﹣=4(k+1),xNxM==8k﹣12.①,联立直线与抛物线解析式得关于y的等式:y=(+2)2﹣(+2)﹣3,化简得y2+(﹣﹣1)y﹣4=0,yM+yN=4k2,yMyN=﹣16k2..②,线段MN的中点就是圆的圆心,∴xO=(xN+xM)=2(K+1),代入直线方程得yO=2k2,∴圆心坐标为(2k+2,2k2),直径MN==,把①、②代入上式化简整理得直径MN=,设圆上某一点(x,y)到圆心的距离等于半径,∴=,化简整理得16k2+12﹣8k=x2﹣4kx﹣4x+y2﹣4k2y=﹣4yk2﹣4kx+x2﹣4x+y2,圆过定点,所以与k值无关,看作是关于k的二次等式,k2、k的系数,常量对应相等,得﹣8=﹣4x,x=2,16=﹣4y,y=﹣4,由以上分析,所以以MN为直径的圆过定点(2,﹣4).故答案为:以线段MN为直径的圆过定点(2,﹣4).4.解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=0;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴xA+xB=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.5.解:(1)①令y=0,则x2﹣(m+3)x+3m=0,解得x=3或x=m,∴A(m,0),B(3,0),令x=0,则y=3m,∴C(0,3m),∵△OBC为等腰直角三角形,∴﹣3m=3解得m=﹣1,∴y=x2﹣2x﹣3;②存在一点D,使得点O为△BCD的外心,理由如下:∵点O为△BCD的外心,∴OB=OC=OD=3,设D(t,t2﹣2t﹣3),∴3=,解得t=,∴D(,)或(,);(2)∵y=x2﹣(m+3)x+3m,∴抛物线的对称轴为直线x=,∵点P的纵坐标为﹣9,∴P(,﹣9),设直线PC的解析式为y=kx+b,∴,解得,∴y=﹣6x+3m,∴平移后的直线P'C'的解析式为y=﹣6x+3m﹣n,联立方程组,整理得,x2﹣(m﹣3)x+n=0,∵直线P′C′与抛物线有且只有一个交点,∴Δ=(m﹣3)2﹣4n=0,∴n=,∵1≤n≤4,∴1≤≤4,∴﹣1≤m≤1或5≤m≤7,∵A(m,0),B(3,0),∴AB=3﹣m,∴S△ABC=×(3﹣m)×(﹣3m)=(m﹣)2﹣,当﹣1≤m≤1时,0<S△ABC≤6;5≤m≤7时,15≤S△ABC≤42.6.解:(1)将A(﹣1,0),B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3,将C(0,c)代入y=x2﹣2x﹣3,可得c=﹣3;(2)A(﹣1,0),B(3,0),C(0,﹣3)关于x=3对称的点分别为A'(7,0),B(3,0),C(6,﹣3),设抛物线的解析式为y=x2+b'x+c',∴,解得,∴y=x2﹣10x+21;(3)①∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点为(1,﹣4),∴当m=﹣4时,直线y=m和图形“W”只有两个交点;当m>0时,直线y=m和图形“W”只有两个交点;∴m>0或m=﹣4时,直线y=m和图形“W”只有两个交点;②当m=﹣4时,M(1,﹣4),N(5,﹣4),∴BM=BN,∴△MNB是等腰三角形但不是直角三角形;当m>0时,M(1﹣,m),N(5+,m),∴BM=BN,当BM⊥AM时,2+=m,解得m=0(舍)或m=5,∴m=5.7.解:(1)将A(﹣2,0),B(6,0)代入y=ax2+bx+6,得:,解得:,∴二次函数的解析式为y=﹣x2+2x+6;(2)如图:∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴C(0,6)、D(2,8),∵B(6,0),∴BC=6,CD=2,BD=4,∴BC2+CD2=BD2,∴△BCD是直角三角形,∠BCD=90°,∴S△BCD=BC•CD=12,∵S△PDB=PD•(6﹣2)=2PD=S△CDB=12,∴PD=6,∴P(2,2);(3)∵B(6,0),C(0,6).∴直线BC的解析式为y=﹣x+6,OB=OC,∴∠OBC=∠OCB=45°,∵y=﹣x2+2x+6,∴对称轴l为x=2,当x=2时,y=﹣x+6=4,∴E(2,4),设M(m,﹣m+6),且2<m<6,①当∠MEN=90°,EM=EN时,过点E作EH⊥MN于H,∴MN=2EH,∠EMN=∠ENM=45°,∵∠OBC=∠OCB=45°,∴∠NME=∠OCB,∴MN∥y轴,∴N(m,﹣m2+2m+6),∴MN=﹣m2+2m+6+m﹣6=﹣m2+3m,EH=m﹣2,∴﹣m2+3m=2(m﹣2),解得m=4或m=﹣2(不合题意,舍去),∴M(4,2);②当∠EMN=90°,EM=MN时,∴EH=NH=MH=EN,∠MEN=∠ENM=45°,∵∠OBC=∠OCB=45°,∴∠MEN=∠OBC,∴EN∥x轴,∴点N的纵坐标为4,当y=4时,﹣x2+2x+6=4,解得x=2+2或x=2﹣2(不合题意,舍去),∴N(2+2,4),∴EN=2+2﹣2=2,∴EH=MH=EN=,∴m=2+,∴M(2+,4﹣);综上所述,点M的坐标为(4,2)或(2+,4﹣).8.解:(1)令y=0,则x2﹣(m+3)x+3m=0,解得x=3或x=﹣m,∴A(﹣m,0),B(3,0),令x=0,则y=3m,∴C(0,3m),∵△OBC为等腰直角三角形,∴3=﹣3m,∴m=﹣1,∴y=x2﹣2x﹣3;(2)由(1)知A(﹣1,0),D(﹣2,5),∴AB=4,∴S△BDC=5×8﹣×2×8﹣×3×3﹣×5×5=15,过点M作MQ∥y轴交直线BC于点Q,设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,设M(m,m2﹣2m﹣3),则Q(m,m﹣3),∴MQ=﹣m2+3m,∴S△BCM=×3×(﹣m2+3m)=﹣(m﹣)2+,∴S=15﹣(m﹣)2+,∴当m=时,S有最大值15+=,此时M(,﹣);(3)①y=x2﹣(m+3)x+3m的对称轴为直线x=,∴P(,﹣9),设直线PC的解析式为y=k'x+b',∴,解得,∴y=﹣6x+3m,∴直线PC平移后的直线P'C'的解析式为y=﹣6x+3m﹣n,联立方程组,整理得x2﹣(m﹣3)x+n=0,∵直线P'C'与抛物线有且仅有一个交点,∴Δ=(m﹣3)2﹣4n=0,∴n=(m﹣3)2;②当n=1时,m=1或m=5,当n=5时,m=2+3或m=﹣2+3,∴﹣2+3≤m≤1或5≤m≤2+3.
相关试卷
这是一份2023年中考数学二轮复习《压轴题-直角三角形问题》强化练习(含答案),共23页。
这是一份2023年中考数学二轮复习《压轴题-圆存在问题》强化练习(含答案),共18页。试卷主要包含了定义等内容,欢迎下载使用。
这是一份2023年中考数学二轮复习《压轴题-相似问题》强化练习(含答案),共22页。试卷主要包含了如图,已知抛物线等内容,欢迎下载使用。