![2023年浙江省温州市中考数学预测卷(含答案)01](http://img-preview.51jiaoxi.com/2/3/14149234/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年浙江省温州市中考数学预测卷(含答案)02](http://img-preview.51jiaoxi.com/2/3/14149234/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年浙江省温州市中考数学预测卷(含答案)03](http://img-preview.51jiaoxi.com/2/3/14149234/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年浙江省温州市中考数学预测卷(含答案)
展开2023浙江省温州市中考数学预测卷
一 、选择题(本大题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.下列各数中最大的是( )
A. B. C.0 D.1
2.设x=,则x的取值范围是( )
A. B. C. D. 无法确定
3.某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是( )
A.文 B.羲 C.弘 D.化
4.下列事件中,是必然事件的是( )
A.购买一张彩票,中奖
B.射击运动员射击一次,命中靶心
C.经过有交通信号灯的路口,遇到红灯
D.任意画一个三角形,其内角和是180°
5.如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
A.115° B.118° C.120° D.125°
6.下列计算正确的是( )
A. B.
C. D.
7.不等式组的非负整数解的个数是( )
A.4 B.5 C.6 D.7
8.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为( )
A.﹣1 B.0 C.2 D.3
9.如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为( )
A.140° B.130° C.120° D.110°
10.如图,矩形ABCD中,AB= 8,BC=4,点E在AB上,点F在CD上,点G、H在对角线AC
上, 若四边形EGFH是菱形,则AE的长是( )
A. B. C.5 D.6
二 、填空题(本大题共6小题,每小题4分,共24分)
11.已知菱形ABCD的两条对角线AC、BD的长分别是8cm和6cm.则菱形的面积为 cm2.
12.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为 .
13.当a=2016时,分式的值是 .
14.“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元.
15.如图,在四边形中,,,,,点和点分别是和的中点,连接,,,若,则的面积是_________.
16.如图,在每个小正方形的边长为1的网格中,的顶点均落在格点上,点B在网格线上,且.
(Ⅰ)线段的长等于___________;
(Ⅱ)以为直径的半圆与边相交于点D,若分别为边上的动点,当取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点,并简要说明点的位置是如何找到的(不要求证明)_______.
三 、解答题(本大题共7小题,共66分)
17.解不等式,并在数轴上表示解集.
18.如图,在平面直径坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=
(1)点D的横坐标为 (用含m的式子表示);
(2)求反比例函数的解析式.
19.已知关于,的方程组与的解相同.
(1)求,的值;
(2)若一个三角形的一条边的长为,另外两条边的长是关于的方程的解.试判断该三角形的形状,并说明理由.
20.“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.,B. ,C. ,D. ),下面给出了部分信息.
七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.
八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.
七八年级抽取的班级餐厨垃圾质量统计表
年级 | 平均数 | 中位数 | 众数 | 方差 | A等级所占百分比 |
七年级 | 1.3 | 1.1 | a | 0.26 | 40% |
八年级 | 1.3 | b | 1.0 | 0.23 | m% |
根据以上信息,解答下列问题:
(1)直接写出上述表中a,b,m的值;
(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;
(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).
21.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
22.如图,已知二次函数y=ax2+bx+4的图象与x轴交于点B(﹣2,0),点C(8,0),与y轴交于点A.
(1)求二次函数y=ax2+bx+4的表达式;
(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求N点的坐标;
(3)连接OM,在(2)的结论下,求OM与AC的数量关系.
23.定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.
答案解析
一 、选择题
1.D.
2.B.
3.D.
4.D.
5.C.
6.D
7.B.
8.D.
9.C.
10.C.
二 、填空题
11.24.
12.π﹣.
13.2018.
14.48.
15..
16.
解:(Ⅰ)如图,在Rt△AEC中,CE=3,AE=2,则由勾股定理,得AC==;
(Ⅱ)如图,取格点M,N,连接MN,连接BD并延长,与MN相交于点;连接,与半圆相交于点E,连接BE,与AC相交于点P,连接并延长,与BC相交于点Q,则点P,Q即为所求.
三 、解答题
17.
解:
去括号:
移项:
合并同类项:
化系数为1:
解集表示在数轴上:
18.
解:(1)∵A(m,4),AB⊥x轴于点B,
∴B的坐标为(m,0),
∵将点B向右平移2个单位长度得到点C,
∴点C的坐标为:(m+2,0),
∵CD∥y轴,
∴点D的横坐标为:m+2;
故答案为:m+2;
(2)∵CD∥y轴,CD=,
∴点D的坐标为:(m+2,),
∵A,D在反比例函数y=(x>0)的图象上,
∴4m=(m+2),
解得:m=1,
∴点a的横坐标为(1,4),
∴k=4m=4,
∴反比例函数的解析式为:y=.
19.
解:由题意列方程组:
解得
将,分别代入和
解得,
∴,
(2)
解得
这个三角形是等腰直角三角形
理由如下:∵
∴该三角形是等腰直角三角形.
20.
解:(1)根据题意得,七年级10个班的餐厨垃圾质量中, 出现的此时最多,即众数是 ;
由扇形统计图可知,
八年级的A等级的班级数为10×20%=2个,八年级共调查10个班,故中位数为第5个和第6个数的平均数,A等级2个班,B等级的第3个数和第4个数是1.0和1.0,故八年级10个班的餐厨垃圾质量的中位数为(1.0+1.0)÷2=1.0
;
(2)∵八年级抽取的10个班级中,餐厨垃圾质量为A等级的百分比是20%,
∴估计该校八年级各班这一天的餐厨垃圾质量符合A等级的班级数为:30×20%=6(个);
答:估计该校八年级各班这一天的餐厨垃圾质量符合A等级的班级数为6个.
(3)七年级各班落实“光盘行动”情况更好,因为:
①七年级各班餐厨垃圾质量的众数0.8低于八年级各班的餐厨垃圾质量的众数1.0;
②七年级各班餐厨垃圾质量A等级的40%高于八年级各班餐厨垃圾质量A等级的20%;
八年级各班落实“光盘行动”情况更好,因为:
①八年级各班餐厨垃圾质量的中位数1.0低于七年级各班餐厨垃圾质量的中位数1.1;
②八年级各班餐厨垃圾孩子里那个的方差0.23低于七年级各班餐厨垃圾质量的方差0.26.
21.
解:(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠AGO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(2)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,
∴在Rt△OAG′中,sin∠AG′O==,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°,
即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,
∴α=180°﹣30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②如图3,当旋转到A.O、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=,
∵OG=2OD,
∴OG′=OG=,
∴OF′=2,
∴AF′=AO+OF′=+2,
∵∠COE′=45°,
∴此时α=315°.
22.
解:
(1)将点B,点C的坐标分别代入y=ax2+bx+4可得,解得,
∴二次函数的表达式为y=﹣x2+x+4;
(2)设点N的坐标为(n,0)(﹣2<n<8),
则BN=n+2,CN=8﹣n.
∵B(﹣2,0),C(8,0),
∴BC=10,
在y=﹣x2+x+4中令x=0,可解得y=4,
∴点A(0,4),OA=4,
∴S△ABN=BN•OA=(n+2)×4=2(n+2),
∵MN∥AC,
∴,
∴==,
∴,
∵﹣<0,
∴当n=3时,即N(3,0)时,△AMN的面积最大;
(3)当N(3,0)时,N为BC边中点,
∵MN∥AC,
∴M为AB边中点,
∴OM=AB,
∵AB===2,AC===4,
∴AB=AC,
∴OM=AC.
23.
解:(1)∵∠A=∠B=∠C,
∴3∠A+∠ADC=360°,
∴∠ADC=360°﹣3∠A.
∵0<∠ADC<180°,
∴0°<360°﹣3∠A<180°,
∴60°<∠A<120°;
(2)证明:∵四边形DEBF为平行四边形,
∴∠E=∠F,且∠E+∠EBF=180°.
∵DE=DA,DF=DC,
∴∠E=∠DAE=∠F=∠DCF,
∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,
∴∠DAB=∠DCB=∠ABC,
∴四边形ABCD是三等角四边形
(3)①当60°<∠A<90°时,如图1,
过点D作DF∥AB,DE∥BC,
∴四边形BEDF是平行四边形,∠DFC=∠B=∠DEA,
∴EB=DF,DE=FB,
∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,
∴△DAE∽△DCF,AD=DE,DC=DF=4,
设AD=x,AB=y,
∴AE=y﹣4,CF=4﹣x,
∵△DAE∽△DCF,
∴,
∴,
∴y=x2+x+4=﹣(x﹣2)2+5,
∴当x=2时,y的最大值是5,
即:当AD=2时,AB的最大值为5,
②当∠A=90°时,三等角四边形是正方形,
∴AD=AB=CD=4,
③当90°<∠A<120°时,∠D为锐角,如图2,
∵AE=4﹣AB>0,
∴AB<4,
综上所述,当AD=2时,AB的长最大,最大值是5;
此时,AE=1,如图3,
过点C作CM⊥AB于M,DN⊥AB,
∵DA=DE,DN⊥AB,
∴AN=AE=,
∵∠DAN=∠CBM,∠DNA=∠CMB=90°,
∴△DAN∽△CBM,
∴,
∴BM=1,
∴AM=4,CM==,
∴AC===.
2023年浙江省温州市中考数学预测卷二(含答案): 这是一份2023年浙江省温州市中考数学预测卷二(含答案),共16页。试卷主要包含了,则n的值为_____等内容,欢迎下载使用。
2023年浙江省绍兴市中考数学预测卷(含答案): 这是一份2023年浙江省绍兴市中考数学预测卷(含答案),共16页。试卷主要包含了d2.等内容,欢迎下载使用。
2023年浙江省宁波市中考数学预测卷(含答案): 这是一份2023年浙江省宁波市中考数学预测卷(含答案),共14页。试卷主要包含了573×103B.45,50,OC=4,CD的长为,1m,参考数据,60m,等内容,欢迎下载使用。