中考数学三轮冲刺过关 回归教材重难点05 解直角三角形的实际应用
展开中考数学第三轮复习策略
第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。
1、同学们应当注重研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。2、第三轮复习应该注意的几个问题:
(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要贴近中考题。
(2)模拟题的难度应当立足中考又要高于中考。
(3)详细统计模拟测试失分情况。
(4)对错题进行纠错和消化,与之相关的基础知识要再记忆再巩固。
(5)适当的“解放”,但应保持适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的最佳状态。
(6)调节生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。
回归教材重难点05 解直角三角形的实际应用
解三角形的实际应用是初中《直角三角形的边角关系》章节的重点内容,其中主要在解直角三角形中考查的频率比较高。在中考数学中,主要是以实际应用的考法出现。通过熟练的掌握正弦、余弦、正切的意义,提升数学学科素养,提高逻辑思维推断能力。
本考点是中考五星高频考点,在全国各地的中考试卷中均有出现,题目难度中等。
1.锐角三角函数的定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边, 余弦(cos)等于邻边比斜边 正切(tan)等于对边比邻边.
2.特殊角的三角函数值的计算
3.解直角三角形的应用(坡度坡脚问题)
(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.
(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.
1.(2021·山东青岛·中考真题)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼的高度.如图所示,其中观景平台斜坡的长是20米,坡角为,斜坡底部与大楼底端的距离为74米,与地面垂直的路灯的高度是3米,从楼顶测得路灯项端处的俯角是.试求大楼的高度.
(参考数据:,,,,,)
2.(2021·四川内江·中考真题)在一次课外活动中,某数学兴趣小组测量一棵树的高度.如图所示,测得斜坡的坡度,坡底的长为8米,在处测得树顶部的仰角为,在处测得树顶部的仰角为,求树高.(结果保留根号)
3.(2021·甘肃兰州·中考真题)避雷针是用来保护建筑物、高大树木等避免雷击的装置.如图,小陶同学要测量垂直于地面的大楼顶部避雷针的长度(,,三点共线),在水平地面点测得,,点与大楼底部点的距离,求避雷针的长度.(结果精确到.参考数据:,,,,,)
4.(2021·辽宁盘锦·中考真题)如图,小华遥控无人机从点A处飞行到对面大厦MN的顶端M,无人机飞行方向与水平方向的夹角为37°,小华在点A测得大厦底部N的俯角为31°,两楼之间一棵树EF的顶点E恰好在视线AN上,已知树的高度为6米,且,楼AB,MN,树EF均垂直于地面,问:无人机飞行的距离AM约是多少米?(结果保留整数.参考数据:cos31°≈0.86, tan31°≈0.60, cos37°≈0.80, tan37°≈0.75)
5.(2021·江苏淮安·中考真题)如图,平地上一幢建筑物AB与铁塔CD相距50m,在建筑物的顶部A处测得铁塔顶部C的仰角为28°、铁塔底部D的俯角为40°,求铁塔CD的高度.
(参考数据:sin28°≈0.47,cos28°≈0.8,tan28°≈0.53,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
6.(2022·重庆·模拟预测)如图,重庆是著名的山城,为了测量坡度为的斜坡BC上的建筑物AB的高度,一个数学兴趣小组站在山脚点C处沿水平方向走了6米到达点D,再沿斜坡DF行走26米到达点F,再向前走了20米到达一个比较好的测量点G,在G点测量得建筑物底部B的仰角为26.5°,建筑物顶部A的仰角为30°,已知斜坡DF的坡度为1:2.4,测量员的身高忽略不计,A,B,C,D,E,F,G,H在同一平面内,AB⊥CD于点H,DE⊥FG于点E.
(1)求点G到山脚C的水平距离;
(2)求建筑物AB的高度.(结果精确到0.1米,参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,)
7.(2021·河南·模拟预测)2021年4月4日,中国海军组织辽宁舰航母编队在台湾周边海域进行训练.包括辽宁舰在内的6艘解放军军舰沿冲绳本岛与宫古岛之间海域南下,向太平洋驶去,并在该区域设立禁飞禁航区,如图,该区域为不规则四边形,点A在点B正西200km处,点D在点A正北方,且在点B的西偏北60°方向上,点C在点B的北偏东24°方向且距点B为300km,则这片禁飞禁航区的面积是多少?(参考数据;sin54°≈0.809,cos54°≈0.588,tan54°≈1.376,1.732)
8.(2021·海南·海口市第十四中学模拟预测)如图,2020年5月5日,我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运载火箭从地面O处发射,当火箭到达A时,地面D处的雷达站测得AD=5000米,仰角为30°,3秒后,火箭直线上升到点B处,此时地面C处的雷达站测得B处的仰角为45°.若C、D两处相距460米.(参考数据:)
(1)求火箭从A到B处的平均速度(结果精确到米/秒);
(2)求地面C处的雷达站测得BC的距离.
9.(2021·山东青岛·一模)如图,为固定电线杆CM,其自身需植入地下1.5米,且由两根互相垂直的拉线AC与BC协助固定.A、D、B在同一直线上.
(1)若电线杆地面上部分CD高为h米,∠CAB=α,请用h与α三角函数的代数式表示BC的长度为 ;
(2)若∠CAB=25°,电线杆CM为11.5米,求两处固定点A、B之间的距离是多少?(结果精确到1米)(sin25°≈,cos25°≈,tan25°≈)
10.(2021·山东东营·二模)小明与小华在一次数学实践活动中,想要测量他们家对面商业大厦的高MN,如图所示,小明爬到居民楼窗台B处,测得商业大厦顶部N的仰角∠1的度数为60°,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩又上了几层楼来到窗台C处测得大厦底部M的俯角∠2的度数为30°,已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=18m,BC=6m,试求商业大厦的高MN.
11.(2021·江苏·沭阳县怀文中学二模)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EFCB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)
(1)求屋顶到横梁的距离AG;
(2)求房屋的高AB(结果精确到1m).
中考数学三轮冲刺过关 回归教材重难点11 二次函数与几何的综合应用: 这是一份中考数学三轮冲刺过关 回归教材重难点11 二次函数与几何的综合应用,文件包含中考数学三轮冲刺过关回归教材重难点11二次函数与几何的综合应用教师版docx、中考数学三轮冲刺过关回归教材重难点11二次函数与几何的综合应用学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
中考数学三轮冲刺过关 回归教材重难点10 二次函数的实际应用: 这是一份中考数学三轮冲刺过关 回归教材重难点10 二次函数的实际应用,文件包含中考数学三轮冲刺过关回归教材重难点10二次函数的实际应用教师版docx、中考数学三轮冲刺过关回归教材重难点10二次函数的实际应用学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
中考数学三轮冲刺过关 回归教材重难点09 圆的综合问题: 这是一份中考数学三轮冲刺过关 回归教材重难点09 圆的综合问题,文件包含中考数学三轮冲刺过关回归教材重难点09圆的综合问题教师版docx、中考数学三轮冲刺过关回归教材重难点09圆的综合问题学生版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。