所属成套资源:8年级人教版数学下册(春季班)同步培优题典
人教版八年级下册第十七章 勾股定理17.1 勾股定理综合训练题
展开这是一份人教版八年级下册第十七章 勾股定理17.1 勾股定理综合训练题,文件包含8年级数学下册尖子生同步培优题典专题174勾股定理的应用大题专练教师版docx、8年级数学下册尖子生同步培优题典专题174勾股定理的应用大题专练学生版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
专题17.4勾股定理的应用大题培优
姓名:__________________ 班级:______________ 得分:_________________
1.(2020秋•莱州市期中)某工厂为扩大生产,购置一大型机械,其外包装高2.7米,长2米,宽1.8米,车间门的形状如图,问这个大型机械能否通过车间大门?
【分析】根据勾股定理得出CD的长,进而得出CH的长,即可判定.
【解析】点D在车门中线0.9米处,且CD⊥AG,与地面交于H,
OC=OG=12AG=1米,OD=0.9米,
在Rt△OCD中,由勾股定理得:
CD2=OC2﹣OD2=12﹣0.92=0.19,
∴CH=CD+DH=0.19+2.3≈2.8>2.7,
∴这个大型机械能通过车间大门.
2.(2020秋•荥阳市期中)郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.
求:(1)两棵景观树之间的距离;
(2)点B到直线AC的距离.
【分析】(1)根据勾股定理解答即可;
(2)根据三角形面积公式解答即可.
【解析】(1)因为△ABC是直角三角形,
所以由勾股定理,得AC2=BC2+AB2.
因为AC=50米,BC=30米,
所以AB2=502﹣302=1600.
因为AB>0,
所以AB=40米.
即A,B两点间的距离是40米.
(2)过点B作BD⊥AC于点D.
因为S△ABC=12AB•BC=12AC•BD,
所以AB•BC=AC•BD.
所以BD=AB⋅BCAC=30×4050=24(米),
即点B到直线AC的距离是24米.
3.(2020秋•太原期中)如图是一块四边形木板,其中AB=16cm,BC=24cm,CD=9cm,AD=25cm,∠B=∠C=90°.李师傅找到BC边的中点P,连接AP,DP,发现△APD是直角三角形,请你通过计算说明理由.
【分析】根据勾股定理解答即可.
【解析】∵点P为BC中点,
∴BP=CP=12BC=12(cm),
∵∠B=90°,
在Rt△ABP中,根据勾股定理可得:AB2+BP2=AP2,
162+122=AP2,
解得:AP=20(cm),
同理可得:DP=15(cm),
∵152+202=252,
∴AP2+DP2=AD2,
∴△APD是直角三角形,∠APD=90°.
4.(2020秋•渝中区校级月考)一架梯子AB长25m,如图斜靠在一面墙上,梯子底瑞B离墙7m.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4m,那么梯子的底端在水平方向也滑动了4m吗?如果不是,梯子的底端在水平方向上滑动了多长的距离呢?
【分析】应用勾股定理求出AO的高度,以及B′O的距离即可解答.
【解析】(1)由题意,得AB2=AO2+BO2,
所以:AO=AB2−BO2=252−72=24(米).
(2)由A′B′2=A′O2+OB′2,得
B′O=A'B'2−A'O'2=252−(24−4)2=45×5=15(米).
∴BB′=B′O﹣BO=15﹣7=8(米).
答:梯子底部在水平方向不是滑动了4米,而是8米.
5.(2020秋•碑林区校级月考)我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200米,则共需要投入多少钱?
【分析】利用勾股定理求出AC,利用勾股定理的逆定理证明∠ADC=90°即可解决问题.
【解析】连接AC,
在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,
∴AC=AB2+BC2=202+152=25(米).
在△ADC中,∵CD=7,AD=24,AC=25,
∴AD2+CD2=242+72=625=AC2.
∴△ADC是直角三角形,且∠ADC=90°.
∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).
∴四边形空地ABCD的面积为234平方米.
∴200×234=46800(元).
答:学校共需投入46800元.
6.(2020秋•青羊区校级月考)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.
(1)该小学是否受到噪声的影响,并说明理由.
(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?
【分析】过点A作AC⊥ON于点C,求出AC的长,第一台到B点时开始对学校有噪音影响,第二台到B点时第一台已经影响小学50米,直到第二台到D点噪音才消失.
【解析】如图所示:
过点A作AC⊥ON于点C,
∵∠MON=30°,OA=160米,
∴AC=12OA=80米,
∵80m<100m,
∴该小学会受到噪声影响;
(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,
∴AB=AD=100米,
由勾股定理得:BC=AB2−AC2=1002−802=60(米),
∴BD=2BC=120米,CD=60米
∴影响的时间应是:t=1205=24(秒);
答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.
7.(2020春•荔湾区月考)一架梯子AB长2.5m,如图斜靠在一面墙上,梯子底端B离墙0.7m.
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了0.4m.那么梯子底部在水平方向滑动了0.4m吗?为什么?
【分析】(1)直接根据勾股定理求出AC的长即可;
(2)根据梯子的顶端下滑了0.4米可求出CA′的长,再由勾股定理求出CB′的长,进而可得出BB′的长.
【解析】(1)∵AB=2.5米,BC=0.7米,
∴AC=AB2−BC2=2.52−0.72=2.4(米).
答:这个梯子的顶端距地面有2.4米;
(2)在Rt△A′CB′中,
∵A′C=AC﹣0.4=24﹣0.4=2(米),A′B′=2.5米,
∴CB′=A'B'2−CA'2=2.52−22=1.5(米),
∴BB′=CB′﹣BC=1.5﹣0.7=0.8(米).
答:梯子底部在水平方向滑动了0.8米.
8.(2020秋•山西月考)(1)求满足4x2=25的未知数x的值.
(2)如图,为修铁路需要通隧道AC,测得∠A+∠B=90°,AB=5km,BC=4km,若每天凿0.2km,则需要几天才能把隧道AC凿通?
【分析】(1)根据平方根解答即可;
(2)根据勾股定理解答即可.
【解析】(1)x2=25,
x=±254=±52;
(2)因为∠A+∠B=90°,
所以∠ACB=90°.
又因为在Rt△ABC中,AC2=AB2﹣BC2=9,
所以AC=3km
需要的时间:t=30.2=15(天),
9.(2020秋•卢龙县期末)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)
【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.
【解析】在Rt△ABC中,AC=30m,AB=50m;
根据勾股定理可得:
BC=AB2−AC2=502−302=40(m)
∴小汽车的速度为v=402=20(m/s)=20×3.6(km/h)=72(km/h);
∵72(km/h)>70(km/h);
∴这辆小汽车超速行驶.
答:这辆小汽车超速了.
10.(2020秋•重庆期末)如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.
(1)学校是否会受到影响?请说明理由.
(2)如果受到影响,则影响时间是多长?
【分析】(1)作AB⊥MN于B,根据含30度的直角三角形三边的关系得到AB=12PA=60m,由于这个距离小于100m,所以可判断拖拉机在公路MN上沿PN方向行驶时,学校受到噪音影响;
(2)以点A为圆心,100m为半径作⊙A交MN于C、D,根据垂径定理得到BC=BD,再根据勾股定理计算出BC=80m,则CD=2BC=160m,根据速度公式计算出拖拉机在线段CD上行驶所需要的时间.
【解析】(1)学校受到噪音影响.理由如下:
作AB⊥MN于B,如图1,
∵PA=120m,∠QPN=30°,
∴AB=12PA=60m,
而60m<100m,
∴消防车在公路MN上沿PN方向行驶时,学校受到噪音影响;
(2)以点A为圆心,100m为半径作⊙A交MN于C、D,如图,
∵AB⊥CD,
∴CB=BD,
在Rt△ABC中,AC=100m,AB=60m,
CB=AC2−AB2=80m,
∴CD=2BC=160m,
∵拖拉机的速度5m/s,
∴拖拉机在线段CD上行驶所需要的时间=160÷5=32(秒),
∴学校受影响的时间为32秒.
11.(2020秋•内江期末)台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.
(1)求∠ACB的度数;
(2)海港C受台风影响吗?为什么?
(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?
【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;
(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(3)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【解析】(1)∵AC=300km,BC=400km,AB=500km,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,∠ACB=90°;
(2)海港C受台风影响,
理由:过点C作CD⊥AB,
∵△ABC是直角三角形,
∴AC×BC=CD×AB,
∴300×400=500×CD,
∴CD=240(km),
∵以台风中心为圆心周围250km以内为受影响区域,
∴海港C受台风影响;
(3)当EC=250km,FC=250km时,正好影响C港口,
∵ED=EC2−CD2=70(km),
∴EF=140km,
∵台风的速度为20千米/小时,
∴140÷20=7(小时).
答:台风影响该海港持续的时间为7小时.
12.(2020秋•海勃湾区期末)交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路l上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路l上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据:2=1.41,3=1.73).
【分析】解直角三角形得到AB=OA﹣OB=73米,求得此车的速度≈86千米/小时>80千米/小时,于是得到结论.
【解析】此车超速,
理由:∵∠POB=90°,∠PBO=45°,
∴△POB是等腰直角三角形,
∴OB=OP=100米,
∵∠APO=60°,
∴OA=3OP=1003≈173米,
∴AB=OA﹣OB=73米,
∴733≈24米/秒≈86千米/小时>80千米/小时,
∴此车超速.
13.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.
【分析】设AB=x,则AC=x+1,依据勾股定理即可得到方程x2+52=(x+1)2,进而得出风筝距离地面的高度AB.
【解析】设AB=x,则AC=x+1,
由图可得,∠ABC=90°,BC=5,
∴Rt△ABC中,AB2+BC2=AC2,
即x2+52=(x+1)2,
解得x=12,
答:风筝距离地面的高度AB为12米.
14.(2020秋•惠来县期末)如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.
(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?
【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑0.5米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,可以得出,梯子底端水平方向上滑行的距离.
【解析】(1)根据勾股定理:
所以梯子距离地面的高度为:AO=AB2−OB2=2(米);
(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2﹣0.5)=1.5(米),
根据勾股定理:OB′=A'B'2−OA'2=2(米),
所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5(米),
答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.
15.(2020春•武汉期中)如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.
【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.
【解析】设AE=x,则BE=20﹣x,
由勾股定理得:
在Rt△ADE中,DE2=AD2+AE2=82+x2,
在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,
由题意可知:DE=CE,
所以:82+x2=142+(20﹣x)2,解得:x=13.3
所以,E应建在距A点13.3km.
16.(2020春•无为县期末)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CA=6.5千米,CD=6千米,AD=2.5千米.
(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;
(2)求原来的路线BC的长.
【分析】(1)利用勾股定理逆定理证明CD⊥AB,根据垂线段最短可得答案;
(2)设BC=x千米,则BD=(x﹣2.5)千米,利用勾股定理列出方程,再解即可.
【解析】(1)是,
理由:∵62+2.52=6.52,
∴CD2+AD2=AC2,
∴△ADC为直角三角形,
∴CD⊥AB,
∴CD是从村庄C到河边最近的路;
(2)设BC=x千米,则BD=(x﹣2.5)千米,
∵CD⊥AB,
∴62+(x﹣2.5)2=x2,
解得:x=8.45,
答:路线BC的长为8.45千米.
17.(2020春•云梦县期中)如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?
【分析】可以设AE=xkm,则BE=(80﹣x)km,在直角△ADE中根据勾股定理可以求得DE2,在直角△BCE中根据勾股定理可以求得CE2,根据DE=CE可以求得x的值,即可求得AE的值.
【解析】设AE=xkm,则BE=(80﹣x)km,
∵AD⊥AB,BC⊥AB,
∴△ADE和△BCE都是直角三角形,
∴DE2=AD2+AE2,CE2=BE2+BC2,
又∵AD=50,BC=30,DE=CE,
∴502+x2=(80﹣x)2+302,
解得x=30.
答:5G信号塔E应该建在离A乡镇30千米的地方.
18.(2020春•硚口区期中)如图,一根直立于水中的芦苇BD高出水面AC1米,一阵风吹来,芦苇的顶端D恰好到达水面的C处,且C到BD的距离AC=3米,求芦苇BD的长度为多少米?
【分析】设芦苇BD的长度为x米,则水深(x﹣1)米,利用勾股定理列出方程,再解即可.
【解析】设芦苇BD的长度为x米,则水深(x﹣1)米,由题意得:
x2﹣32=(x﹣1)2,
解得:x=5,
答:芦苇BD的长度为5米.
19.(2020秋•成都期中)台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿AB由点A向点B移动,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.
(1)海港C受台风影响吗?为什么?
(2)若台风的速度为25km/h,台风影响该海港持续的时间有多长?
【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【解析】(1)海港C受台风影响.
理由:如图,过点C作CD⊥AB于D,
∵AC=300km,BC=400km,AB=500km,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
∴AC×BC=CD×AB
∴300×400=500×CD
∴CD=300×400500=240(km)
∵以台风中心为圆心周围250km以内为受影响区域,
∴海港C受到台风影响.
(2)当EC=250km,FC=250km时,正好影响C港口,
∵ED=EC2−CD2=70(km),
∴EF=140km
∵台风的速度为25km/h,
∴140÷25=5.6(小时)
即台风影响该海港持续的时间为5.6小时.
20.(2020秋•盐湖区期中)如图,某小区有两个喷泉A,B,两个喷泉的距离长为250m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为120m,BM的长为150m.
(1)求供水点M到喷泉A,B需要铺设的管道总长;
(2)求喷泉B到小路AC的最短距离.
【分析】(1)根据勾股定理解答即可;
(2)根据勾股定理的逆定理和垂线段解答即可.
【解析】(1)在Rt△MNB中,BN=BM2−MN2=1502−1202=90(m),
∴AN=AB﹣BN=250﹣90=160(m),
在Rt△AMN中,AM=AN2+MN2=1602+1202=200(m),
∴供水点M到喷泉A,B需要铺设的管道总长=200+150=350(m);
(2)∵AB=250m,AM=200m,BM=150m,
∴AB2=BM2+AM2,
∴△ABM是直角三角形,
∴BM⊥AC,
∴喷泉B到小路AC的最短距离是BM=150m.
相关试卷
这是一份初中数学人教版八年级下册18.1.1 平行四边形的性质课后练习题,文件包含8年级数学下册尖子生同步培优题典专题189平行四边形的性质与判定大题专练教师版docx、8年级数学下册尖子生同步培优题典专题189平行四边形的性质与判定大题专练学生版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份初中数学人教版八年级下册17.1 勾股定理当堂达标检测题,文件包含8年级数学下册尖子生同步培优题典专题173勾股定理的应用小题专练教师版docx、8年级数学下册尖子生同步培优题典专题173勾股定理的应用小题专练学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份初中数学北师大版九年级下册1 二次函数随堂练习题,文件包含2023年九年级数学下册尖子生同步培优题典专题210二次函数推理计算与证明问题大题专练-重难点培优-老师版docx、2023年九年级数学下册尖子生同步培优题典专题210二次函数推理计算与证明问题大题专练-重难点培优-学生版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。