高中北师大版 (2019)3.2 离散型随机变量的方差完美版ppt课件
展开1.通过实例,理解取有限个值的离散型随机变量的方差、标准差的概念和意义.2.会求离散型随机变量的方差、标准差.3.会利用离散型随机变量的方差、标准差解决一些实际问题.核心素养:数学运算、数学建模.
思考 均值能够反映随机变量取值的“平均水平”,但有时两个随机变量的均值相同,其取值却存在较大的差异.如何来研究这种差异呢?
设a,b都是实数,且a≠0,则Y=aX+b也是一个随机变量,而且E(Y)=aE(X)+b,那么,这两个随机变量的方差之间有什么联系呢?
分析:若X与Y都是离散型随机变量,且Y=aX+b,则由X与Y之间分布列和均值之间的关系可知
例6 甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,设ξ,η分别表示甲、乙两人所加工出的次品件数,且ξ和η的分布列分别如下表:
试比较这两名工人谁的技术水平更高.
解题步骤 利用均值和方差的意义解决实际问题的步骤1.比较均值.离散型随机变量的均值反映了离散型随机变量取值的平均水平,因此,在实际决策问题中,需先计算均值,看一下谁的平均水平高.2.在均值相等或接近的情况下计算方差.方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.通过计算方差,分析一下谁的水平发挥相对稳定.3.下结论.依据均值和方差做出结论.
跟踪训练 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等,而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别如下,甲保护区:乙保护区:试评定这两个保护区的管理水平.
解:甲保护区违规次数X的数学期望和方差为E(X)=0×0.3+1×0.3+2×0.2+3×0.2=1.3,D(X)=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.乙保护区的违规次数Y的数学期望和方差为E(Y)=0×0.1+1×0.5+2×0.4=1.3,D(Y)=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E(X)=E(Y),D(X)>D(Y),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,乙保护区内的违规事件次数更加集中和稳定,所以乙保护区的管理水平比甲高.
2.已知离散型随机变量X的分布列如下表.若E(X)=0,D(X)=1,a= ,b= .
高考复习 10.5 离散型随机变量的分布列、均值与方差课件PPT: 这是一份高考复习 10.5 离散型随机变量的分布列、均值与方差课件PPT,共49页。PPT课件主要包含了aEX+b,a2DX,答案A,答案C,答案D,答案AC等内容,欢迎下载使用。
北师大版 (2019)选择性必修 第一册3.1 离散型随机变量的均值试讲课ppt课件: 这是一份北师大版 (2019)选择性必修 第一册3.1 离散型随机变量的均值试讲课ppt课件,共16页。PPT课件主要包含了学习目标,情境与问题,新知学习,典例解析,典例剖析,尝试与发现,随堂小测,课堂小结等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征教学演示ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.3 离散型随机变量的数字特征教学演示ppt课件,共35页。