开学活动
搜索
    上传资料 赚现金

    北师大版数学七年级下册三角形及其性质(基础)知识讲解 (含答案)

    北师大版数学七年级下册三角形及其性质(基础)知识讲解 (含答案)第1页
    北师大版数学七年级下册三角形及其性质(基础)知识讲解 (含答案)第2页
    北师大版数学七年级下册三角形及其性质(基础)知识讲解 (含答案)第3页
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学七年级下册三角形及其性质(基础)知识讲解 (含答案)

    展开

    这是一份北师大版数学七年级下册三角形及其性质(基础)知识讲解 (含答案),共7页。
    三角形及其性质(基础)知识讲解 【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法.2. 理解三角形内角和定理的证明方法3. 掌握并会把三角形按边和角分类4. 掌握并会应用三角形三边间的关系5. 理解三角形的高、中线、角平分线的概念,学会它们的画法.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 要点诠释:(1)三角形的基本元素:三角形的边:即组成三角形的线段;三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; 三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:不在同一条直线上三条线段首尾顺次相接.(3)三角形的表示:三角形用符号“△”表示,顶点为ABC的三角形记作“△ABC,读作三角形ABC,注意单独的没有意义;ABC的三边可以用大写字母ABBCAC来表示,也可以用小写字母abc来表示,边BCa表示,边ACAB分别用bc表示.要点二、三角形的内角和三角形内角和定理:三角形的内角和为180°要点诠释:应用三角形内角和定理可以解决以下三类问题:在三角形中已知任意两个角的度数可以求出第三个角的度数;已知三角形三个内角的关系,可以求出其内角的度数;求一个三角形中各角之间的关系.要点三、三角形的分类1.按角分类:要点诠释:锐角三角形:三个内角都是锐角的三角形;钝角三角形:有一个内角为钝角的三角形.2.按边分类:要点诠释: 不等边三角形:三边都不相等的三角形;等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;等边三角形:三边都相等的三角形.要点四、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边.要点诠释:(1理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点AADBC于点DBC边的中点D,连接ADBAC的平分线AD,交BC于点D标示图形符号语言1ADABC的高.2ADABCBC边上的高.3ADBC于点D4ADC90°ADB90°(ADCADB90°)1ADABC的中线.2ADABCBC边上的中线.3BDDCBC4.点DBC边的中点.1ADABC的角平分线.2AD平分BAC,交BC于点D312BAC推理语言因为ADABC的高,所以ADBC(ADBADC90°)因为ADABC的中线,所以BDDCBC因为AD平分BAC,所以12BAC用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.【典型例题】类型一、三角形的内角和 1.证明:三角形的内角和为180°.【答案详解解:已知:如图,已知ABC,求证:A+B+C=180°.     证法1如图1所示,延长BCE,作CDAB.因为ABCD(已作),所以1=A(两直线平行,内错角相等),B=2(两直线平行,同位角相等).    ACB+1+2=180°(平角定义),    所以ACB+A+B=180°(等量代换).证法2如图2所示,在BC边上任取一点D,作DEAB,交ACEDFAC,交AB于点F因为DFAC(已作),所以1=C(两直线平行,同位角相等),2=DEC(两直线平行,内错角相等).因为DEAB(已作).所以3=BDEC=A(两直线平行,同位角相等).所以A=2(等量代换).1+2+3=180°(平角定义),所以A+B+C=180°(等量代换).2.ABC中,已知A+B80°C2B,试求ABC的度数.思路点拨题中给出两个条件:A+B80°C2B,再根据三角形的内角和等于180°,即A+B+C180°就可以求出ABC的度数.【答案详解解:由A+B80°A+B+C180°    C100°      C2B      B50°      A80°-B80°-50°30°【总结升华】解答本题的关键是利用隐含条件A+B+C180°.本题可以设Bx,则A80°-xC2x建立方程求解.举一反三:【变式】已知,如图 ,在ABC中,C=ABC=2ABDAC边上的高,求DBC的度数.      【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°BDC BDAC边上的高∴∠BDC=90°∴∠DBC=180°90°-72°=18°类型二、三角形的分类3.一个三角形的三个内角分别是75°、30°、75°,这个三角形是(  A 锐角三角形    B 等腰三角形    C 等腰锐角三角形  【答案】C举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是(   )三角形A 锐角    B  直角   C 钝角  D无法判断【答案】C详解利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的三边关系4. (四川南充)三根木条的长度如图所示,能组成三角形的是(    )思路点拨三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有两边指的是任意的两边,对于两边之差它可能是正数,也可能是负数,一般取的绝对值.【答案】D详解要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.ABC三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D选项中,2cm+3cm4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:判断出较长的一边;看较短的两边之和是否大于较长的一边,大于则能构成三角形,不大于则不能构成三角形.举一反三:【变式】2020泉州)已知ABC中,AB=6BC=4,那么边AC的长可能是下列哪个值(  )A11 B5 C2 D1【答案】B解:根据三角形的三边关系,64AC6+42AC10符合条件的只有5故选:B 5.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【答案】详解三角形的两边长分别是2和7, 则第三边长c的取值范围是2-7<c<2+7,即5<c<9.【总结升华】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.举一反三:【变式】(浙江金华)已知三角形的两边长为48,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型四、三角形中重要线段6. 2020江苏月考)在ABC中,画出边AC上的高,下面4幅图中画法正确的是(  )A BC  D【答案】C【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三:【变式】如图所示,已知ABC,试画出ABC各边上的高. 【答案】  解:所画三角形的高如图所示. 7.如图所示,CDABCAB边上的中线,BCD的周长比ACD的周长大3cmBC8cm,求边AC的长.思路点拨根据题意,结合图形,有下列数量关系:ADBD②△BCD的周长比ACD的周长大3【答案详解 解:依题意:BCD的周长比ACD的周长大3cm     故有:BC+CD+BD-(AC+CD+AD)=3       CDABCAB边上的中线,  ADBD,即BC-AC3  BC8  AC5 答:AC的长为5cm【总结升华】运用三角形的中线的定义得到线段ADBD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三:【变式】如图所示,在ABC中,DE分别为BCAD的中点,且,则________【答案】1 

    英语朗读宝
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map