北师大版数学七年级下册《相交线与平行线》全章复习与巩固(提高)巩固练习 (含答案)
展开这是一份北师大版数学七年级下册《相交线与平行线》全章复习与巩固(提高)巩固练习 (含答案),共7页。
《相交线与平行线》全章复习与巩固(提高)巩固练习
【巩固练习】
一、选择题
1.(济南)已知,如图所示,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是( ).
A.相等 B.互余 C.互补 D.互为对顶角
2.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .
A.第一次向左拐30°,第二次向右拐30°.
B.第一次向右拐50°,第二次向左拐130°.
C.第一次向左拐50°,第二次向左拐130°.
D.第一次向左拐50°,第二次向右拐130°.
3.(2020•邯山区一模)如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=( )
A.35° B.40° C.45° D.50°
4.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是( ).
A.同位角 B.同旁内角 C.内错角 D. 同位角或内错角
5. 如图所示,b∥c,a⊥b,∠1=130°,则∠2=( ).
A.30° B. 40° C. 50° D. 60°
6. 如图,已知∠A=∠C,如果要判断AB∥CD,则需要补充的条件是( ).
A.∠ABD=∠CEF B.∠CED=∠ADB
C.∠CDB=∠CEF
D.∠ABD+∠CED=180°
(第5题) (第6题) (第7题)
7.如图,,则AEB=( ).
A. B. C. D.
8. 如图所示,把一张对面互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论不正确的有( ).
A. B. ∠AEC=148° C. ∠BGE=64° D. ∠BFD=116°
二、填空题
9.(2020•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3= .
10. (宁波外校一模)如图所示,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西40°方向,则从C岛看A、B两岛的视角∠ACB等于________.
11. (吉安)如图所示,AB∥CD,MN交AB、CD于E、F,EG和FG分别是∠BEN和∠MFD的平分线,那么EG与FG的位置关系是 .
12.如图,一块梯形玻璃的下半部分打碎了,若∠A=125°,∠D=107°,则打碎部分的两个角的度数分别为 .
13. 如图所示,已知AB∥CD,∠BAE=3∠ECF,∠ECF=28°,则∠E的度数 .
14. 已知,如图∠1=∠2,∠C=∠D,则∠A ∠F(填“>”“=”“<”).
15.如图所示,直线AD、BE、CF相交于一点O,∠BOC的同位角有________,∠OED的同旁内角有________,∠ABO的内错角有________,由∠OED=∠BOC得________∥________,由∠OED=∠ABO得________∥________,由AB∥DE,CF∥DE可得AB________CF.
16. 如图,AB∥CD,则α、β、γ之间的关系为 .
三、解答题
17.如图所示,直线AB、MN分别与直线PQ相交于O、S,射线OG⊥PQ,且OG将∠BOQ分成1:5两部分,∠PSN比它的同位角的2倍小60°,求∠PSN的度数.
18. 已知,如图AB∥EF,∠ABC=∠DEF,试判断BC和DE的位置关系,并说明理由.
19.(2020秋•黄岛区期末)如图,已知CF⊥AB于F,ED⊥AB于D,∠1=∠2,
求证:FG∥BC.
20.河的两岸成平行线,A,B是位于河两岸的两个车间(如图),要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法是:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB,EB交MN于D.在D处作到对岸的垂线DC,垂足为C,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.
【答案与详解】
一、选择题
1. 【答案】B;
【详解】因为AB⊥CD,所以∠1+∠2=90°,因此∠1与∠2的关系是互为余角.
2. 【答案】A;
【详解】首先根据题意对各选项画出示意图,观察图形,根据同位角相等,两直线平行,即可得出答案.
3. 【答案】D;
【详解】∵∠2=∠3=70°,
∴AB∥CD,
∴∠BGP=∠GPC,
∵∠GPC=80°,
∴∠BGP=80°,
∴∠BGM=180°﹣∠BGP=100°,
∵GH平分∠MGB,
∴∠1=∠BGM=50°,故选D.
4. 【答案】D;
【详解】三线八角中,角平分线互相平行的两角是同位角或内错角,互相垂直的两角是同旁内角.
5. 【答案】B;
【详解】反向延长射线a交c于点M,则∠2=90°-(180°-130°)=40°.
6.【答案】B;
7.【答案】B;
【详解】,∠EAB=75°-25°=50°.
8.【答案】B.
二、填空题
9. 【答案】110°;
【详解】∵∠2=∠MEN,∠1=∠2=40°,
∴∠1=∠MEN,
∴AB∥CD,
∴∠3+∠BMN=180°,
∵MN平分∠EMB,
∴∠BMN=,
∴∠3=180°﹣70°=110°.
10.【答案】90°;
【详解】过点C作CD∥AE,由AE∥BF,知CD∥AE∥BF,则有∠ACD=∠EAC=
50°,∠BCD=∠CBF=40°,从而有∠ACB=∠ACD十∠BCD=50°+40°=90°.
11.【答案】垂直;
【详解】
解:EG⊥FG,理由如下:
∵ AB∥CD,∴ ∠BEN+∠MFD=180°.
∵ EG和FG分别是∠BEN和∠MFD的平分线,
∴ ∠GEN+∠GFM=(∠BEN+∠MFD)=×180°=90°.
∴ ∠EGF=180°-∠GEN-∠GFM=90°.
∴ EG⊥FG.
12.【答案】55°,73°;
【详解】如图,将原图补全,根据平行线的性质可得答案.
.
13.【答案】56°;
【详解】过点F作FG∥EC,交AC于G,
∴ ∠ECF=∠CFG,
∵ AB∥CD,∴ ∠BAE=∠AFC.
又∵ ∠BAE=3∠ECF,∠ECF=28°,
∴ ∠BAE=3×28°=84°.
∴ ∠CFG=28°,∠AFC=84°.
∴ ∠AFG=∠AFC-∠CFG=56°.
又 FG∥EC,∴ ∠AFG=∠E.
∴ ∠E=56°.
14.【答案】=;
【详解】平行线的判定与性质及对顶角的性质的应用.
15.【答案】∠AFO、∠OED,∠EOD、∠EOC、∠OBC、∠EDO、∠EDC,
∠COB、∠DEB、∠DOB, OC、DE, DE、AB,∥;
【详解】本题主要考查同位角、内错角、同旁内角的识别和平行线的判定和性质.
16.【答案】α+β-γ=180°;
【详解】通过做平行线或构造三角形得解.
三、解答题
17.【详解】
解:因为OG⊥PQ(已知),
所以∠GOQ=90°(垂直定义),
因为∠BOG:∠GOQ=1:5(已知),
所以∠BOG=18°,所以∠BOQ=108°.
因为∠POB+∠BOQ=180°(补角定义),
所以∠POB=180°-∠BOQ=180°-108°=72°.
因为∠PSN=2∠POB-60°(已知),
所以∠PSN=2×72°-60°=84°.
点拨:此题的关键是找出要求的∠PSN与题中的各已知量的关系.
18.【详解】
解:如图,连接BE,因为AB∥EF,所以∠ABE=∠BEF(两直线平行,内错角相等).
又因为∠ABC=∠DEF,
所以∠ABE-∠ABC=∠BEF-∠DEF,即∠CBE=∠BED.
所以BC∥DE(内错角相等,两直线平行).
19.【详解】
证明:∵CF⊥AB,ED⊥AB,
∴DE∥FC(垂直于同一条直线的两条直线互相平行),
∴∠1=∠BCF(两直线平行,同位角相等);
又∵∠2=∠1(已知),
∴∠BCF=∠2(等量代换),
∴FG∥BC(内错角相等,两直线平行).
20.【详解】
解:利用图形平移的性质及连接两点的线中,线段最短,可知:
.
而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.