中考数学优化探究一轮复习(理数) 第2章 第10节 第1课时 利用导数研究函数的单调性课件PPT
展开第二章 函数、导数及其应用第十节 导数的应用第一课时 利用导数研究函数的单调性
知识点一 利用导数研究函数的单调性1.函数f(x)在某个区间(a,b)内的单调性与其导数的正负关系
(1)若_________,则f(x)在这个区间上是增函数;(2)若_________,则f(x)在这个区间上是减函数;(3)若_________,则f(x)在这个区间内是常数.
f′(x)>0与f(x)为增函数的关系f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上是增函数,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.
2.利用导数判断函数单调性的一般步骤
(1)求_________;(2)在定义域内解不等式____________________;(3)根据结果确定f(x)的单调区间.
若函数y=f(x)在区间(a,b)上单调递增,则f ′(x)≥0,且在(a,b)的任意子区间上,等号不恒成立;若函数y=f(x)在区间(a,b)上单调递减,则f ′(x)≤0,且在(a,b)的任意子区间上,等号不恒成立.
2.(易错题)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是( )A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)
知识点二 利用导数研究函数的极值与最值1.函数的极大值
在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都______ x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.
在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都______ x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.极大值与极小值统称为_________,极大值点与极小值点统称为极值点.
(1)函数y=f(x)在[a,b]上的最大值点x0指的是:函数在这个区间上所有点的函数值都_________f(x0).(2)函数y=f(x)在[a,b]上的最小值点x0指的是:函数在这个区间上所有点的函数值都_________f(x0).
二级结论1.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.2.若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.3.极值有可能是最值,但最值只要不在区间端点处取得,其必定是极值.
必明易错1.极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1).2.极大值与极小值没有必然关系,极小值可能比极大值还大.3.极值一定在区间内部取得,有极值的函数一定不是单调函数.4.f′(x0)=0是x0为f(x)的极值点的必要而不充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.
2.如图是函数y=f(x)的导函数y=f′(x)的图像,则下列判断正确的是( )
A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.当x=2时,f(x)取到极小值
4.(易错题)设a∈R,若函数y=ex+ax有大于零的极值点,则实数a的取值范围是________.解析:因为y=ex+ax,所以y′=ex+a.因为函数y=ex+ax有大于零的极值点,所以方程y′=ex+a=0有大于零的解,因为当x>0时,-ex<-1,所以a=-ex<-1.答案:(-∞,-1)
题型一 函数单调性的判断
[例] 已知函数g(x)=ln x+ax2-(2a+1)x,若a>0,试讨论函数g(x)的单调性.
解析:(1)f′(x)=cs x(sin xsin 2x)+sin x(sin xsin 2x)′=2sin xcs xsin 2x+2sin2xcs 2x=2sin xsin 3x.
题型二 利用导数研究函数单调性的应用
函数的单调性是高考命题的重点,其应用是考查热点.常见的命题角度有:(1)y=f(x)与y=f′(x)的图像辨识;(2)已知函数单调性求参数的取值范围.
考法(一) y=f(x)与y=f′(x)的图像辨识[例1] 函数y=f(x)的导函数y=f′(x)的图像如图所示,则函数y=f(x)的图像可能是( )
[解析] 设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图像易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.
函数图像与其导函数图像的关系:导函数f′(x)图像在x轴上方时对应的自变量的取值区间为原函数f(x)图像上升部分对应的区间(递增区间),导函数f′(x)图像在x轴下方时对应的自变量的取值区间为原函数f(x)图像下降部分对应的区间(递减区间).
(1)若函数h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;(2)若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.
[变式探究1] 本例中,若函数h(x)在[1,4]上单调递增,求a的取值范围.
[变式探究2] 本例中,若h(x)在[1,4]上存在单调递减区间,求a的取值范围.
解析:h(x)在[1,4]上存在单调递减区间,则h′(x)<0在[1,4]上有解,
所以a>-1,又a≠0,所以a的取值范围是(-1,0)∪(0,+∞).
[变式探究3] 本例中,若函数h(x)在[1,4]上不单调,求a的取值范围.解析:∵h(x)在[1,4]上不单调,∴h′(x)=0在(1,4)上有解,
由函数的单调性求参数的取值范围的四种方法(1)可导函数f(x)在D上单调递增(或递减)求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.
(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f(x)在D上不单调,则f(x)在D上有极值点,且极值点不是D的端点.
[题组突破]1.已知函数f(x)=x2+2cs x,若f′(x)是f(x)的导函数,则函数f′(x)的图像大致是( )
解析:设g(x)=f′(x)=2x-2sin x,g′(x)=2-2cs x≥0,所以函数f′(x)在R上单调递增.
利用导数研究函数单调性中的核心素养
数学运算、逻辑推理——构造函数解决不等式问题此类涉及已知f(x)与f′(x)的一些关系式,比较有关函数式解决不等式的问题,可通过构造新的函数,创造条件,从而利用单调性求解.
1.x与f(x)的综合函数[例1] 设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
又因为f(-1)=0,所以g(1)=g(-1)=0,故当0<x<1时,g(x)>g(1)=0,故f(x)>0;当x<-1时,g(x)<g(-1)=0,故f(x)>0.综上,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).
2.ex与f(x)的综合函数[例2] 已知f(x)(x∈R)有导函数,且任意x∈R,f′(x)>f(x),n∈N+,则有( )A.enf(-n)<f(0),f(n)>enf(0)B.enf(-n)<f(0),f(n)<enf(0)C.enf(-n)>f(0),f(n)>enf(0)D.enf(-n)>f(0),f(n)<enf(0)
[例3] 设a>0,b>0,e是自然对数的底数,则( )A.若ea+2a=eb+3b,则a>bB.若ea+2a=eb+3b,则a<bC.若ea-2a=eb-3b,则a>bD.若ea-2a=eb-3b,则a<b[解析] 因为a>0,b>0,所以ea+2a=eb+3b=eb+2b+b>eb+2b.对于函数y=ex+2x(x>0),因为y′=ex+2>0,所以y=ex+2x在(0,+∞)上单调递增,因而a>b成立.
(1)对于不等式f′(x)+g′(x)>0,构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0,构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k,构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0,构造函数F(x)=f(x)·g(x).
[题组突破]1.(2021·上饶模拟)对任意x∈R,函数y=f(x)的导数都存在,若f(x)+f′(x)>0恒成立,且a>0,则下列说法正确的是( )A.f(a)<f(0) B.f(a)>f(0)C.ea·f(a)<f(0) D.ea·f(a)>f(0)解析:设g(x)=ex·f(x),则g′(x)=ex[f(x)+f′(x)]>0,所以g(x)为R上的单调递增函数,因为a>0,所以g(a)>g(0),即ea·f(a)>f(0).
2.设f(x),g(x)分别是定义在R上的奇函数和偶函数,f′(x),g′(x)为其导函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0且g(-3)=0,则不等式f(x)·g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)
解析:令h(x)=f(x)g(x),当x<0时,h′(x)=f′(x)·g(x)+f(x)g′(x)>0,则h(x)在(-∞,0)上单调递增,又f(x),g(x)分别是定义在R上的奇函数和偶函数,所以h(x)为奇函数,所以h(x)在(0,+∞)上单调递增.又由g(-3)=0,可得h(-3)=-h(3)=0,所以x<-3或0<x<3时h(x)<0.
中考数学优化探究一轮复习(理数) 第2章 第10节 第5课时 利用导数研究函数零点问题课件PPT: 这是一份中考数学优化探究一轮复习(理数) 第2章 第10节 第5课时 利用导数研究函数零点问题课件PPT,共19页。
中考数学优化探究一轮复习(理数) 第2章 第10节 第4课时 利用导数研究不等式恒成立问题课件PPT: 这是一份中考数学优化探究一轮复习(理数) 第2章 第10节 第4课时 利用导数研究不等式恒成立问题课件PPT,共24页。
中考数学优化探究一轮复习(理数) 第2章 第10节 第2课时 利用导数研究函数的极值与最值课件PPT: 这是一份中考数学优化探究一轮复习(理数) 第2章 第10节 第2课时 利用导数研究函数的极值与最值课件PPT,共35页。