还剩39页未读,
继续阅读
所属成套资源:中考数学优化探究一轮复习精品课件(理数)
成套系列资料,整套一键下载
中考数学优化探究一轮复习(理数) 第2章 第8节 函数与方程及应用课件PPT
展开
冲刺高考 金榜题名2023届优化探究一轮复习(理数)第二章 函数、导数及其应用第八节 函数与方程及应用 f(x)=0x轴零点(3)零点存在性定理如果函数y=f(x)满足:①在区间[a,b]上的图像是连续不断的一条曲线;②______________;则函数y=f(x)在(a,b)上存在零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.f(a)·f(b)<0二级结论有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图像通过零点时,函数值可能变号,也可能不变号.必明易错1.函数f(x)的零点是一个实数,是方程f(x)=0的根,也是函数y=f(x)的图像与x轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图像. B2.函数f(x)=ex+3x的零点个数是__________.答案:13.若二次函数f(x)=x2-2x+m在区间(0,4)上存在零点,则实数m的取值范围是__________.解析:二次函数f(x)图像的对称轴方程为x=1.若在区间(0,4)上存在零点,只需f(1)≤0且f(4)>0即可,即-1+m≤0且8+m>0,解得-8<m≤1.答案:(-8,1]4.(易错题)给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图像连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是_________(填序号).答案:③④知识点二 函数模型及应用指数、对数、幂函数模型性质比较递增递增递增y轴x轴1.已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( )A.f(x)>g(x)>h(x) B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x) D.f(x)>h(x)>g(x)解析:由图像(图略)知,当x∈(4,+∞)时,增长速度由大到小依次为g(x)>f(x)>h(x).B2.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为__________.答案:3 题型一 函数零点个数或所在区间的判定1.(2019·高考全国卷Ⅲ)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( )A.2 B.3C.4 D.5B解析:令f(x)=0,得2sin x-sin 2x=0,即2sin x-2sin xcos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个. B C1.判断函数零点个数的三种方法(1)解方程法:若对应方程f(x)=0可解,通过解方程,则方程有几个解就对应有几个零点.(2)函数零点的存在性定理法:利用定理不仅要判断函数图像在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图像与性质(如单调性、奇偶性、周期性、对称性)才能确定函数的零点个数.(3)数形结合法:合理转化为两个函数的图像(易画出图像)的交点个数问题.先画出两个函数的图像,看其交点的个数,其中交点的个数就是函数零点的个数.2.确定函数f(x)的零点所在区间的常用方法(1)利用函数零点的存在性定理:首先看函数y=f(x)在区间[a,b]上的图像是否连续,其次看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.(2)数形结合法:通过画函数图像,观察图像与x轴在给定区间上是否有交点来判断. 题型二 函数模型及应用 [例] 国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝1瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图所示. 根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整小时计算)(参考数据:ln 9.82≈2.28,ln 10.18≈2.32,ln 54.27≈3.99) 1.与幂函数、指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型(底数大于1)是增长速度越来越快的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.2.在解决幂函数、指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图像求解最值问题,必要时可借助导数.[对点训练]某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?解析:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6<x≤20,x∈Z.所以y=f(x)(2)对于y=50x-115,3≤x≤6,x∈Z,显然当x=6时,ymax=185;对于y=-3x2+68x-115当x=11时,ymax=270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多. 函数与方程及模型应用中的核心素养(一)直观想象——数形结合思想在已知函数零点或方程根确定参数范围中的应用 D 已知函数有零点(方程有根),求参数取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式(组),通过解不等式(组)确定参数范围.(2)分离参数法:先将参数分离,化为a=g(x)的形式,进而转化成求函数最值问题加以解决.(3)数形结合法:将函数解析式(方程)适当变形,转化为图像易得的函数与一个含参的函数的差,在同一平面直角坐标系中画出这两个函数的图像,结合函数的单调性、周期性、奇偶性等性质及图像求解.(二)数学建模——函数建模在实际问题中的应用[例2] 某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f(0)=4,f(2)=6.①求出所选函数f(x)的解析式(注:函数定义域是[0,5],其中x=0表示8月1日,x=1表示9月1日,以此类推);②为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.[解析] (1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f(x)=x(x-q)2+p.(1)①对于f(x)=x(x-q)2+p,由f(0)=4,f(2)=6,可得p=4,(2-q)2=1,又q>1,所以q=3,所以f(x)=x3-6x2+9x+4(0≤x≤5).②因为f(x)=x3-6x2+9x+4(0≤x≤5),所以f′(x)=3x2-12x+9,令f′(x)<0,得1<x<3.所以函数f(x)在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.解函数模型的实际应用题,首先应考虑该题考查的是何种函数,然后根据题意列出函数关系式(注意定义域),并进行相关求解,最后结合实际意义作答.[对点训练]某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来年利润y(百万元)与年投资成本x(百万元)变化的一组数据:给出以下3个函数模型:①y=kx+b(k≠0);②y=abx(a≠0,b>0,且b≠1);③y=loga(x+b)(a>0,且a≠1).(1)选择一个恰当的函数模型来描述x,y之间的关系;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型. 课时作业 · 巩固提升点击进入word....
相关资料
更多