所属成套资源:七年级数学下册压轴题攻略(北师大版,成都专用)
专题05 相交线与平行线压轴题三种模型全攻略-七年级数学下册压轴题攻略(北师大版,成都专用)
展开这是一份专题05 相交线与平行线压轴题三种模型全攻略-七年级数学下册压轴题攻略(北师大版,成都专用),文件包含专题05相交线与平行线压轴题三种模型全攻略解析版-七年级数学下册压轴题攻略北师大版成都专用docx、专题05相交线与平行线压轴题三种模型全攻略原卷版-七年级数学下册压轴题攻略北师大版成都专用docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
专题05 相交线与平行线压轴题三种模型全攻略
类型一、猪脚模型
例.(1)如图甲,AB∥CD,∠2与∠1+∠3的关系是什么?并写出推理过程;
(2)如图乙,AB∥CD,写出∠2+∠4与∠1+∠3+∠5的数量关系,并写出证明过程;
(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7还有类似的数量关系吗?
若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.
【变式训练1】如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
(1)如图①,求证:∠BEC=∠ABE+∠DCE;
(2)如图②,求证:∠BE2C=∠BEC;
(3)猜想:若∠En=α度,那∠BEC等于多少度?(直接写出结论).
【变式训练2】把一块含60°角的直角三角尺放在两条平行线之间.
(1)如图1,若三角形的60°角的顶点放在上,且,求的度数;
(2)如图2,若把三角尺的两个锐角的顶点分别放在和上,请你探索并说明与间的数量关系;
(3)如图3,若把三角尺的直角顶点放在上,30°角的顶点落在上,请直接写出与的数量关系.
【变式训练3】如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.
(1)如图(2)所示,已知,请问,,有何关系并说明理由;
(2)如图(3)所示,已知,请问,,又有何关系并说明理由;
(3)如图(4)所示,已知,请问与有何关系并说明理由.
类型二、铅笔模型
例.问题情境:如图1,,,.求 度数.
小明的思路是:如图2,过 作 ,通过平行线性质,可得 .
问题迁移:
(1)如图3,,点 在射线 上运动,当点 在 、 两点之间运动时,,. 、 、 之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点 在 、 两点外侧运动时(点 与点 、 、 三点不重合),请你直接写出 、 、 间的数量关系.
【变式训练1】问题情境:我市某中学班级数学活动小组遇到问题:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
经过讨论形成的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.
(1)按该数学活动小组的思路,请你帮忙求出∠APC的度数;
(2)问题迁移:如图3,∥,点在、两点之间运动时, ,.请你判断 、、 之间有何数量关系?并说明理由;
(3)拓展应用:如图4,已知两条直线∥,点在两平行线之间,且的平分线与 ∠DFP的平分线相交于点Q,求的度数.
【变式训练2】下列各图中的MA1与NAn平行.
…
(1)图①中的∠A1+∠A2= 度,图②中的∠A1+∠A2+∠A3= 度,
图③中的∠A1+∠A2+∠A3+∠A4= 度,图④中的∠A1+∠A2+∠A3+∠A4+∠A5= 度,…,
第⑩个图中的∠A1+∠A2+∠A3+…+∠A10= 度
(2)第n个图中的∠A1+∠A2+∠A3+…+∠An= .
【变式训练3】问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=∠ABF,∠CDM=∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.
(3)若∠ABM=∠ABF,∠CDM=∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M= .
【变式训练4】已知如图,AB∥CD,试解决下列问题:
(1)∠1+∠2= ;
(2)∠1+∠2+∠3= ;
(3)∠1+∠2+∠3+∠4= ;
(4)试探究∠1+∠2+∠3+∠4+…+∠n= .
类型三、拐弯模型
例.已知,直线,点为平面上一点,连接与.
(1)如图1,点在直线、之间,当,时,求.
(2)如图2,点在直线、之间左侧,与的角平分线相交于点,写出与之间的数量关系,并说明理由.
(3)如图3,点落在下方,与的角平分线相交于点,与有何数量关系?并说明理由.
【变式训练1】已知AB∥CD,点E为AB,CD之外任意一点.
(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;
(2)如图2,探究∠CDE与∠B,∠E的数量关系,并说明理由.
【变式训练2】如图,已知直线l1//l2,l3、和l1、l2分别交于点A、B、C、D,点P在直线l3或上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;
(4)若点P在线段DC延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.
【变式训练3】已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点
(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.
【变式训练4】(1)、如图(1),AB∥CD,点P在AB、CD外部,若∠B=40°,∠D=15°,则∠BPD °.
(2)、如图(2),AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
(3)、在图(2)中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度数.