所属成套资源:2023年浙教版中考数学一轮复习 单元练习(含答案)
2023年浙教版中考数学一轮复习《特殊平行四边形》单元练习(含答案)
展开这是一份2023年浙教版中考数学一轮复习《特殊平行四边形》单元练习(含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙教版中考数学一轮复习
《特殊平行四边形》单元练习
一 、选择题
1.如图,丝带重叠的部分一定是( )
A.正方形 B.矩形 C.菱形 D.都有可能
2.已知▱ABCD,给出下列条件:①AC=BD;②∠BAD=90°;③AB=BC;④AC⊥BD,添加其中之一能使▱ABCD成为菱形的条件是( )
A.①③ B.②③ C.③④ D.①②③
3.如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
A.AB=BC B.AC⊥BD C.∠ABC=90° D.∠1=∠2
4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
5.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
6.已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A.当AB=BC时,它是菱形
B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形
D.当AC=BD时,它是正方形
7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为( )
A.35° B.55° C.65° D.75°
8.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )
A.20° B.30° C.35° D.55°
9.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为( )
A.5 B. C. D.﹣1
10.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( )
A.2 B. C. D.1
11.如图,在平行四边形ABCD和平行四边形BEFG中,已知AB=BC,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠DCB=∠GEF=120°,则PG:PC=( )
A. B. C. D.
12.在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为( )
A.5:3 B.3:2 C.10:7 D.8:5
二 、填空题
13.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为 .
14.如图,将矩形ABCD绕点A顺时针旋转到矩形A/B/C/D/的位置,旋转角为a (0°<a<90°).若∠1=110°,则a= .
15.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.若AB=6cm,BC=8cm,则线段FG的长为
16.在菱形ABCD中,AC=6,BD=8,则这个菱形的边长为________.
17.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于 cm.
18.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ.
下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.
其中一定成立的是 .
三 、解答题
19.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.
(1)求菱形ABCD的周长;
(2)若AC=2,求BD的长.
20.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且AC=2DE,连接AE交OD于点F,连接CE、OE.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
21.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
22.如图,已知四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD是正方形.
23.如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E、G、H分別在矩形ABCD的边AB、CD、DA上,AH=2.
(1)已知DG=6,求AE的长;
(2)已知DG=2,求证:四边形EFGH为正方形.
24.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10 cm,AD=8cm,DE=6cm.
(1)求证:▱ABCD是矩形;
(2)求BF的长;
(3)求折痕AF的长.
25.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.
理解:
(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.
求证:四边形ABCD是等补四边形;
探究:
(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.
运用:
(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.
答案
1.C.
2.C
3.C.
4.B.
5.D.
6.D.
7.B.
8.A.
9.D
10.B
11.B.
12.D.
13.答案为:10.
14.答案为:20
15.答案为:3cm.
16.答案为:5.
17.答案为:7.5.
18.答案为:①②③④.
19.解:(1)∵四边形ABCD是菱形,AB=2,
∴菱形ABCD的周长=2×4=8;
(2)∵四边形ABCD是菱形,AC=2,AB=2
∴AC⊥BD,AO=1,
∴BO=,
∴BD=2.
20.证明:(1)四边形ABCD是菱形,
∴OA=OC=AC,AD=CD,
∵DE∥AC且DE=AC,
∴DE=OA=OC,
∴四边形OADE、四边形OCED都是平行四边形,
∴OE=AD,
∴OE=CD;
(2)解:∵AC⊥BD,
∴四边形OCED是矩形,
∵在菱形ABCD中,∠ABC=60°,
∴AC=AB=2,
∴在矩形OCED中,CE=OD=.
∴在Rt△ACE中,AE=.
21. (1)证明:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°.
∵BE=DF,
∴OE=OF.
又∵∠AOE=∠COF,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB.
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,
∴OA=AB=6,
∴AC=2OA=12.
在Rt△ABC中,BC==6,
∴矩形ABCD的面积为AB·BC=6×6=36.
22.证明:(1)在△ADE与△CDE中,
∵
∴△ADE≌△CDE,∴∠ADE=∠CDE.
∵AD∥BC,∴∠ADE=∠CBD,
∴∠CDE=∠CBD,∴BC=CD.
∵AD=CD,∴BC=AD,
∴四边形ABCD为平行四边形.
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC,
∴∠BCE=∠BEC.
∵∠CBE∶∠BCE=2∶3,
∴∠CBE=180×=45°.
∵四边形ABCD是菱形,
∴∠ABE=∠CBE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.,
23.解:(1)∵AD=6,AH=2
∴DH=AD﹣AH=4
∵四边形ABCD是矩形
∴∠A=∠D=90°
∴在Rt△DHG中,HG2=DH2+DG2
在Rt△AEH中,HE2=AH2+AE2
∵四边形EFGH是菱形
∴HG=HE
∴DH2+DG2=AH2+AE2
即42+62=22+AE2
∴AE=4
(2)∵AH=2,DG=2
∴AH=DG
∵四边形EFGH是菱形
∴HG=HE
在Rt△DHG和Rt△AEH中
HG=EH,DG=AH
∴Rt△DHG≌Rt△AEH(HL)
∴∠DHG=∠AEH
∵∠AEH+∠AHG=90°
∴∠DHG+∠AHG=90°
∴∠GHE=90°
∵四边形EFGH是菱形
∴四边形EFGH是正方形
24.证明:(1)∵把纸片ABCD折叠,使点B恰好落在CD边上,
∴AE=AB=10,AE2=102=100.
又∵AD2+DE2=82+62=100,
∴AD2+DE2=AE2.
∴△ADE是直角三角形,且∠D=90°.
又∵四边形ABCD为平行四边形,
∴▱ABCD是矩形.
(2)设BF=x,则EF=BF=x,
EC=CD-DE=10-6=4(cm),FC=BC-BF=8-x,
在Rt△EFC中,EC2+FC2=EF2,
即42+(8-x)2=x2.解得x=5.
故BF=5cm.
(3)在Rt△ABF中,由勾股定理得,
AB2+BF2=AF2.
∵AB=10 cm,BF=5cm,
∴AF=5(cm).
25.解:(1)证明:∵四边形ABCD为圆内接四边形,
∴∠A+∠C=180°,∠ABC+∠ADC=180°,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴,
∴AD=CD,
∴四边形ABCD是等补四边形;
(2)AD平分∠BCD,理由如下:
如图2,过点A分别作AE⊥BC于点E,AF垂直CD的延长线于点F,
则∠AEB=∠AFD=90°,
∵四边形ABCD是等补四边形,
∴∠B+∠ADC=180°,
又∠ADC+∠ADF=180°,
∴∠B=∠ADF,
∵AB=AD,
∴△ABE≌△ADF(AAS),
∴AE=AF,
∴AC是∠BCF的平分线,即AC平分∠BCD;
(3)如图3,连接AC,
∵四边形ABCD是等补四边形,
∴∠BAD+∠BCD=180°,
又∠BAD+∠EAD=180°,
∴∠EAD=∠BCD,
∵AF平分∠EAD,
∴∠FAD=∠EAD,
由(2)知,AC平分∠BCD,
∴∠FCA=∠BCD,
∴∠FCA=∠FAD,
又∠AFC=∠DFA,
∴△ACF∽△DAF,
∴,即,
∴DF=5﹣5.
相关试卷
这是一份2023年浙教版中考数学一轮复习《图形与坐标》单元练习(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年浙教版中考数学一轮复习《平行线》单元练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙教版中考数学一轮复习《因式分解》单元练习(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。