中考数学一轮复习《全等三角形》课时跟踪练习(含答案)
展开中考数学一轮复习
《全等三角形》课时跟踪练习
一 、选择题
1.下列说法中正确的有( )
①用一张底片冲洗出来的10张1寸相片是全等图形;
②我国国旗上的4颗小五角星是全等图形;
③所有的正方形是全等图形;
④全等图形的面积一定相等.
A.1个 B.2个 C.3个 D.4个
2.如图,若△ABC≌△DEF,则∠E等于( )
A.30° B. 50° C.60° D.100°
3.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
4.如图,南京路与八一街垂直,西安路也与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程为( )m.
A.400 B.600 C.500 D.700
5.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为( )
A.(﹣,1) B.(﹣1,) C.(,1) D.(﹣,﹣1)
6.如图所示小明设计了一种测零件内径AB的卡钳,问:在卡钳的设计中, 要使DC=AB,AO、BO、CO、DO 应满足下列的哪个条件?( )
A.AO=CO B.BO=DO C.AC=BD D.AO=CO且BO=DO
7.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有( )
A.5对 B.4对 C.3对 D.2对
8.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.
下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.
其中正确的有( ) 个.
A.1 B.2 C.3 D.4
二 、填空题
9.如图,△ABC≌△ADE,则,AB = ,∠E =∠ .若∠BAE=120°,∠BAD=40°,
则∠BAC= .
10.在△ABC和△FED中,BE=FC,∠A=∠D.当添加条件 时(只需填写一个你认为正确的条件),就可得到△ABC≌△DFE,依据是 .
11.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,∠ABC=___.
12.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是 .
13.如图,旗杆AC与旗杆BD相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是 s.
14.如图,AC=AE,AD=AB,∠ACB=∠DAB=90°,∠BAE=35°,AE∥CB,AC,DE交于点F.
(1)∠DAC= ;
(2)猜想线段AF与BC的数量关系是 .
三 、解答题
15.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,
(1)求证:△ABE≌△ACF;
(2)若∠BAE=30°,则∠ADC= °.
16.如图,在等腰Rt△ACB中,∠ACB是直角,AC=BC,把一个45°角的顶点放在C处,两边分别与AB交于E,F两点.
(1)将所得△ACE以C为中心,按逆时针方向旋转到△BCG,试求证:△EFC≌△GFC;
(2)若AB=10,AE∶BF=3∶4,求EF的长.
17.如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
18.如图,△ABC中,∠ACB=90°,AC=6,BC=8.点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以每秒1个单位长度和每秒3个单位长度的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.问:点P运动多少时间时,△PEC与QFC全等?请说明理由.
参考答案
1.C
2.D
3.C
4.C
5.A
6.D
7.B
8.C.
9.答案为:AD, C, 80°.
10.答案为:∠B=∠DEC,AAS
11.答案为:45°.
12.答案为:SSS.
13.答案为:3.
14.答案为:35°;BC=2AF;
15.证明:(1)∵AB=AC,
∴∠B=∠ACF,
在△ABE和△ACF中,
∴△ABE≌△ACF(SAS);
(2)∵△ABE≌△ACF,∠BAE=30°,
∴∠CAF=∠BAE=30°,
∵AD=AC,
∴∠ADC=∠ACD,
∴∠ADC=75°,
16.解:(1)由旋转知:△BCG≌△ACE.
∴CG=CE,∠BCG=∠ACE.
∵∠ACE+∠BCF=45°,
∴∠BCG+∠BCF=45°,
即∠GCF=∠ECF=45°,
而CF为公共边,
∴△EFC≌△GFC(SAS);
(2)连接FG.
由△BCG≌△ACE知:∠CBG=∠A=45°,
∴∠GBF=∠CBG+∠CBF=90°,
由△EFC≌△GFC知:EF=GF.
设BG=AE=3x,BF=4x,
则在Rt△GBF中,GF=5x,
∴EF=GF=5x,
∴AB=3x+5x+4x=10,
∴AB=,
∴EF=5x=.
17. (1)证明:在Rt△AFD和Rt△CEB中,
∵AD=BC,AF=CE,
∴Rt△AFD≌Rt△CEB;
(2)∵∠ABH+∠CBE=90°,∠ABH+∠BAH=90°,
∴∠CBE=∠BAH,
又∵AB=BC,∠AHB=∠CEB=90°,
∴△ABH≌△BCE,
同理可得,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF=4××2×1+1×1=5;
(3)由(1)知,△AFD≌△CEB,故h1=h3.
由(2)知,△ABH≌△BCE≌△CDG≌△DAF,
∴S正方形ABCD=4S△ABH+S正方形HEGF=4×(h1+h2)·h1+h=2h+2h1h2+h.
18.解:设运动时间为t秒时,△PEC与△QFC全等,
∴斜边CP=CQ,有四种情况:
①P在AC上,Q在BC上,CP=6-t,CQ=8-3t,
∴6-t=8-3t,
∴t=1;
②P、Q都在AC上,此时P、Q重合,
∴CP=6-t=3t-8,
∴t=3.5;
③P在BC上,Q在AC上(未到终点),此时不存在;
理由是:14÷3×1<6,Q在AC上时(未到终点),P应也在AC上;
④当Q到A点(和A重合),P在BC上时,
∵CQ=CP,CQ=AC=6,CP=t-6,
∴t-6=6,
∴t=12.
∵t<14,
∴t=12符合题意.
答:点P运动1或3.5或12秒时,△PEC与△QFC全等.
中考数学一轮复习《与圆有关的性质》课时跟踪练习(含答案): 这是一份中考数学一轮复习《与圆有关的性质》课时跟踪练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《与圆有关的计算》课时跟踪练习(含答案): 这是一份中考数学一轮复习《与圆有关的计算》课时跟踪练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《图形的变换》课时跟踪练习(含答案): 这是一份中考数学一轮复习《图形的变换》课时跟踪练习(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。