2023高考数学二轮真题与模拟训练26讲 专题04 函数的应用解析
展开专题4 函数的应用第一部分 真题分类一、单选题1.(2020·海南高考真题)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A.1.2天 B.1.8天C.2.5天 D.3.5天【答案】B【解析】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.2.(2020·全国高考真题(理))若,则( )A. B. C. D.【答案】B【解析】设,则为增函数,因为所以,所以,所以.,当时,,此时,有当时,,此时,有,所以C、D错误.故选:B.3.(2020·全国高考真题(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名 B.18名 C.24名 D.32名【答案】B【解析】由题意,第二天新增订单数为,设需要志愿者x名,,,故需要志愿者名.故选:B4.关于函数有下述四个结论:①f(x)是偶函数 ②f(x)在区间(,)单调递增③f(x)在有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A.①②④ B.②④ C.①④ D.①③【答案】C【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误.当时,,它有两个零点:;当时,,它有一个零点:,故在有个零点:,故③错误.当时,;当时,,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C.5.函数在的零点个数为( )A.2 B.3 C.4 D.5【答案】B【解析】由,得或,,.在的零点个数是3,故选B.6.已知,函数,若函数恰有三个零点,则( )A. B.C. D.【答案】C【解析】当时,,得;最多一个零点;当时,,,当,即时,,在,上递增,最多一个零点.不合题意;当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,,.故选.7.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为( )A. B.C. D.【答案】D【解析】由,得因为,所以,即,解得,所以8.已知函数.若g(x)存在2个零点,则a的取值范围是( )A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)【答案】C【解析】画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.二、填空题9.(2021·北京高考真题)已知函数,给出下列四个结论:①若,则有两个零点;②,使得有一个零点;③,使得有三个零点;④,使得有三个零点.以上正确结论得序号是_______.【答案】①②④【解析】对于①,当时,由,可得或,①正确;对于②,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,存在,使得只有一个零点,②正确;对于③,当直线过点时,,解得,所以,当时,直线与曲线有两个交点,若函数有三个零点,则直线与曲线有两个交点,直线与曲线有一个交点,所以,,此不等式无解,因此,不存在,使得函数有三个零点,③错误;对于④,考查直线与曲线相切于点,对函数求导得,由题意可得,解得,所以,当时,函数有三个零点,④正确.故答案为:①②④.10.设是定义在上的两个周期函数,的周期为4,的周期为2,且是奇函数.当时,,,其中.若在区间上,关于的方程有8个不同的实数根,则 的取值范围是_____.【答案】.【解析】当时,即又为奇函数,其图象关于原点对称,其周期为,如图,函数与的图象,要使在上有个实根,只需二者图象有个交点即可.当时,函数与的图象有个交点;当时,的图象为恒过点的直线,只需函数与的图象有个交点.当与图象相切时,圆心到直线的距离为,即,得,函数与的图象有个交点;当过点时,函数与的图象有个交点,此时,得.综上可知,满足在上有个实根的的取值范围为.11.函数在的零点个数为________.【答案】【解析】详解:由题可知,或解得,或故有3个零点.12.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【解析】分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.【答案】130. 15. 【解析】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.14.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则当时,___________,___________.【答案】 【解析】15.已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.【答案】(1,4) 【解析】由题意得或,所以或,即,不等式f(x)<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.三、解答题16.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+(百米).【解析】解法一:(1)过A作,垂足为E.由已知条件得,四边形ACDE为矩形,.因为PB⊥AB,所以.所以.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知,从而,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此,Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设为l上一点,且,由(1)知,,此时;当∠OBP>90°时,在中,.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+.因此,d最小时,P,Q两点间的距离为17+(百米).解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为,直线PB的方程为.所以P(−13,9),.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:.在线段AD上取点M(3,),因为,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设为l上一点,且,由(1)知,,此时;当∠OBP>90°时,在中,.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由,得a=,所以Q(,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P(−13,9),Q(,9)时,d最小,此时P,Q两点间的距离.因此,d最小时,P,Q两点间的距离为(百米).17.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.【答案】(1) 时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析.【解析】(1)由题意知,当时,,即,解得或,∴时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当时,;当时,;∴;当时,单调递减;当时,单调递增;说明该地上班族中有小于的人自驾时,人均通勤时间是递减的;有大于的人自驾时,人均通勤时间是递增的;当自驾人数为时,人均通勤时间最少.18.已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】(1)f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)见解析.【解析】(1)当a=3时,f(x)=,f ′(x)=.令f ′(x)=0解得x=或x=.当x∈(–∞,)∪(,+∞)时,f ′(x)>0;当x∈(,)时,f ′(x)<0.故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.19.已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求的值.【答案】(1)见解析;(2)【解析】(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.第二部分 模拟训练一、单选题1.定义在R上的函数满足,且时,;时,.令,,则函数的零点个数为( )A.7 B.8 C.9 D.10【答案】B【解析】由题意时,,时,,∵,即,∴把在上图象,向左平移2个单位,再向下平移1个单位,即得在上的图象,类似可得在上的图象,如图,,则,作出直线,由图可知.它与在上图象的交点个数为8.即有8个零点.故选:B.2.定义:如果函数在区间上存在,满足,,则称函数是在区间上的一个双中值函数,已知函数是区间上的双中值函数,则实数的取值范围是( )A. B. C. D.【答案】A【解析】,∵函数是区间上的双中值函数,∴区间上存在 ,满足 ∴方程在区间有两个不相等的解,令,则,解得 ∴实数的取值范围是.故选:A.3.已知偶函数满足,且当时,,关于的不等式在区间上有且只有300个整数解,则实数的取值范围是( )A. B.C. D.【答案】D【解析】因为偶函数满足,所以,所以的周期为且的图象关于直线对称,由于上含有50个周期,且在每个周期内都是轴对称图形,所以关于的不等式在上有3个整数解,当时,,由,得,由,得,所以函数在上单调递增,在上单调递减,因为,,所以当时,,所以当时,在上有4个整数解,不符合题意,所以,由可得或,显然在上无整数解,故而在上有3个整数解,分别为,所以,,,所以.故选:D4.已知,其中,若对任意的实数b,c都有不等式成立,则方程的根的可能性为( )A.有一个实数根 B.两个不相等的实数根 C.至少一个负实数根 D.没有正实数根【答案】C【解析】因为, 所以至少有一个根①,因为对任意的实数b,c都有不等式成立,恒成立,所以在区间上单调递增,所以.若,由得,此时有一个负根和一个正根;若,则,结合①可知至少有一个负根;若,由,,得,则有一个负根和一个正根,故选:C.5.已知函数,若方程有四个不同的解,,,,且,则的取值范围是( )A. B. C. D.【答案】B【解析】作出函数的图象如下:由图象知若有四个不等实根,,,,且,则,,,∴,其中,这是关于的减函数,∴.故选:B.二、填空题6.已知函数,若函数的所有零点依次记为且,,若,则__________.【答案】【解析】由题意,令,解得.∵函数的最小正周期为,,∴当时,可得第一个对称轴,当时,可得.∴函数在上有条对称轴根据正弦函数的图象与性质可知:函数与的交点有9个点,即关于对称,关于对称,…,即,,…,.∵∴∴故答案为.7.已知函数,①若a=1,f(x)的最小值是_____;②若f(x)恰好有2个零点,则实数a的取值范围是_____.【答案】﹣ 【解析】(1)由题意,时,单调递增,,时,,,所以时,;(2)若,则,恰有两个零点0和1,满足题意,若,则时,无零点,但时,有两个零点和,满足题意,当时,则时,是增函数,,有一个零点,时,由得或,因为只有两个零点,所以,解得,综上,的取值范围是.三、解答题8.某公司利用线上、实体店线下销售产品,产品在上市天内全部售完.据统计,线上日销售量、线下日销售量(单位:件)与上市时间天的关系满足:,产品每件的销售利润为(单位:元)(日销售量线上日销售量线下日销售量).(1)设该公司产品的日销售利润为,写出的函数解析式;(2)产品上市的哪几天给该公司带来的日销售利润不低于元?【答案】(1)(2)第5天至第15天该公司日销售利润不低于元.【解析】(1)由题意可得:当时,销售量为,销售利润为:;当时,销售量为,销售利润为:;当时,销售量为,销售利润为:;综上可得: (2)当时,由,解得;当时,由,解得;当时,由,无解.故第5天至第15天给该公司带来的日销售利润不低于元.
2023高考数学二轮真题与模拟训练26讲 专题19 圆与方程解析: 这是一份2023高考数学二轮真题与模拟训练26讲 专题19 圆与方程解析
2023高考数学二轮真题与模拟训练26讲 专题12 数列求和解析: 这是一份2023高考数学二轮真题与模拟训练26讲 专题12 数列求和解析
2023高考数学二轮真题与模拟训练26讲 专题26 计数原理与概率统计解析: 这是一份2023高考数学二轮真题与模拟训练26讲 专题26 计数原理与概率统计解析,共13页。试卷主要包含了已知关于的二次函数.,,得下表等内容,欢迎下载使用。