初中数学青岛版八年级下册6.3 特殊的平行四边形精品课时练习
展开青岛版数学八年级下册课时练习6.3.1
《特殊的平行四边形-矩形》
一 、选择题
1.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于( )
A.30° B.45° C.60° D.75°
2.矩形具有而平行四边形不一定具有的性质是( )
A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分
3.如图,四边形ABCD的对角线AC,BD相交于点O.已知矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为( )
A. cm B.2 cm C.2 cm D.4 cm
4.如图,在矩形纸片ABCD中,将△BCD沿BD折叠,C点落在C′处,则图中共有全等三角形( )
A.2对 B.3对 C.4对 D.5对
5.下列三个命题中,是真命题的有( )
①对角线相等的四边形是矩形;
②三个角是直角的四边形是矩形;
③有一个角是直角的平行四边形是矩形.
A.3个 B.2个 C.1个 D.0个
6.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
7.下列命题中,假命题是( )
A.有一组对角是直角且一组对边平行的四边形是矩形
B.有一组对角是直角且一组对边相等的四边形是矩形
C.有两个内角是直角且一组对边平行的四边形是矩形
D.有两个内角是直角且一组对边相等的四边形是矩形
8.如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
A.AB=BC B.AC⊥BD C.AC=BD D.∠1=∠2
9.如图,在矩形ABCD中,AB=8.将矩形的一角折叠,使点B落在边AD上的B´点处,若AB/=4,则折痕EF的长度为( )
A.8 B.4 C.5 D.10
10.已知下列6个条件:
①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.
则不能使四边形ABCD成为矩形的是( )
A.①②③ B.②③④ C.②⑤⑥ D.④⑤⑥
二 、填空题
11.在矩形ABCD中,A(4,1),B(0,1),C(0,3),则点D的坐标为 .
12.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1 S2;(填“>”或“<”或“=”)
13.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= .
14.如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号) .
15.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.
当∠ACB为__________度时,四边形ABFE为矩形.
16.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为 .
三 、解答题
17.如图,在矩形ABCD中,AD=12,AB=7,DF平分∠ADC,AF⊥EF.
(1)求证:AF=EF;
(2)求EF长.
18.如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线.
19.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形;
(2)若AB=5,AC=6,求四边形CODE的周长.
20.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
答案解析
1.C
2.C.
3.D.
4.C
5.B.
6.C.
7.C.
8.C.
9.C.
10.C
11.答案为:(4,3).
12.答案为:S1=S2.
13.答案为:22.5°.
14.答案为:①④.
15.答案为:60.
16.答案为:2.4.
17.证明:(1)∵四边形ABCD是矩形,
∴∠B=∠C=∠ADC=90°,AB=DC=7,BC=AD=12,
∴∠BAF+∠AFB=90°,
∵DF平分∠ADC,
∴∠ADF=∠CDF=45°,
∴△DCF是等腰直角三角形,
∴FC=DC=7,
∴AB=FC,
∵AF⊥EF,
∴∠AFE=90°,
∴∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,
在△ABF和△FCE中,
∠BAF=∠EFC;AB=FC;∠B=∠C,
∴△ABF≌△FCE(ASA),
∴EF=AF;
(2)解:BF=BC﹣FC=12﹣7=5,
在Rt△ABF中,由勾股定理得:
AF==,则EF=AF=.
18.证明:(1)∵四边形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠DEA=∠B=90°,
∵AF=BC,
∴AF=AD,
在△DEA和△ABF中
∵,
∴△DEA≌△ABF(AAS);
(2)证明:∵由(1)知△ABF≌△DEA,
∴DE=AB,
∵四边形ABCD是矩形,
∴∠C=90°,DC=AB,
∴DC=DE.
∵∠C=∠DEF=90°
∴在Rt△DEF和Rt△DCF中
∴Rt△DEF≌Rt△DCF(HL)
∴∠EDF=∠CDF,
∴DF是∠EDC的平分线.
19.证明:(1)∵四边形ABCD为菱形,
∴∠COD=90°;而CE∥BD,DE∥AC,
∴∠OCE=∠ODE=90°,
∴四边形CODE是矩形.
(2)∵四边形ABCD为菱形,
∴AO=OC=AC=3,OD=OB,∠AOB=90°,
由勾股定理得:
BO2=AB2﹣AO2,而AB=5,
∴DO=BO=4,
∴四边形CODE的周长=2(3+4)=14.
20. (1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.
理由是:当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
数学八年级下册18.2.1 矩形第2课时当堂达标检测题: 这是一份数学八年级下册18.2.1 矩形第2课时当堂达标检测题,共10页。试卷主要包含了下列四边形等内容,欢迎下载使用。
数学八年级下册6.3 特殊的平行四边形精品课时作业: 这是一份数学八年级下册6.3 特殊的平行四边形精品课时作业,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学青岛版八年级下册6.3 特殊的平行四边形优秀同步练习题: 这是一份初中数学青岛版八年级下册6.3 特殊的平行四边形优秀同步练习题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。