终身会员
搜索
    上传资料 赚现金

    初中数学中考复习 专题08 转化思想-【口袋书】2020年中考数学背诵手册

    立即下载
    加入资料篮
    初中数学中考复习 专题08 转化思想-【口袋书】2020年中考数学背诵手册第1页
    初中数学中考复习 专题08 转化思想-【口袋书】2020年中考数学背诵手册第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题08 转化思想-【口袋书】2020年中考数学背诵手册

    展开

    这是一份初中数学中考复习 专题08 转化思想-【口袋书】2020年中考数学背诵手册,共5页。试卷主要包含了转化思想在代数中的运用,转化思想几何中的运用等内容,欢迎下载使用。


    中考数学常见思想方法

    专题08 转化思想

    专题概述:

    数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

    抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.

    数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

    名词诠释:

    转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

     

     

    运用举例:

    一、转化思想在代数中的运用

    1.概念性的转化

    例1.解关于x,y的方程组

    【点睛】本题若解方程组,解法较繁.但若用方程根的定义则可更漂亮地解决.

    【详解】:若a=b时,则方程组有无数组解.因为此时方程组就等价于 x+ay=a2这个二元一次方程,对于任意一个实数x,都可求得相应的实数y,因此它有无数组解.若a≠b,则由已知方程组的定义,得a、b是方程x+yt=t2(即t2-yt-x=0)的根.由韦达定理,得a+b=y,ab=-x.∴原方程组的解为

    2.方法上的转化

    例2 把(ab-1)2+(a+b-2)(a+b-2ab)分解因式.

    【点睛】一般地说本题难度很大.但若用换元法就可转化为较易解的问题.

    【详解】解: 注意本题特点,a+b与ab重复出现,于是设ab=x,a+b=y,则

    原式=(x-1)2+(y-2)(y-2x)

    =x2-2(y-1)x+(y-1)2(注意用公式)

    =[x-(y-1)]2=[ab-(a+b)+1]2(代回)

    =[(a-1)(b-1)]2=(a-1)2(b-1)2

    例3 已知:x2+x-1=0,求x3+2x2+5的值.

    【点睛】 这是条件求值问题,若由x2+x-1=0求出x的值再代入求值,太繁了.但通过变形,用降次的方法进行转化,便迎刃而解了.

    【详解】解法一 ∵ x2+x-1=0,

    ∴ x2=1-x.

    原式=x(1-x)+2(1-x)+5

    =x-x2+2-2x+5

    =x-(1-x)+7-2x=6.

    转化的方法常不是唯一的.灵活思考会得到不同的转化途径.若把待求式拆拼出已知形式可得下列解法.

    解法二 ∵ x2+x-1=0,

    ∴原式=(x3+x2-x)+(x2+x+5)

    =x(x2+x-1)+(x2+x-1)+6=6.

    这叫凑零法.还可以有多种方法,但用多项式除法原理则更简捷.

    原式=(x+1)(x2+x-1)+6.

    ∵ x2+x-1=0,

    ∴原式=6.

    二、转化思想几何中的运用

    1.利用平移变换转化

    例4 已知梯形ABCD中,CD∥AB,∠BAD+∠ABC=90°,M、N分别为AB和CD的中点,求证MN=

    【点睛】本题求证中线段的关系较分散.从题目特点考虑,注意到∠BAD+∠ABC=90°,则将AD、BC向内平移会出现基本图形Rt△NEF.问题转化为证明MN为Rt△NEF斜边上的中线,又转化为AB-CD=EF=2MN即可(证明略).

    2.利用相似变换转化

    例5 如图,△ABC中,AD=DB,DF交AC于E,交BC延长线于F.求证:AE·CF=EC·BF.

    【点睛】我们把AE·CF=EC·BF改写成比例的形式:,就找不出相似三角形,于是考虑做辅助线转化为相似三角形(或平行线分线段成比例定理).作CG∥AB,交DF于G.易得出两个比例式,儿AD=BD.∴,即AE·CF=EC·BF(证明略).

    3.用化归方法转化

    例6 如图,圆内接四边形ABCD的对角线相交于P点.求证:AB·AD∶CB·CD=AP∶PC.

    【点睛】这个题难度很大,很难下手,但方法对头就由难转易,如果我们采取化归的办法清理思路就不难了.从求证中看出比例式两边方次不同,可能是右边约去了因式,然而又很难寻找约去的因式,怎么办呢?可考虑“化归”.我们从求证中看到AB·AD与 CB·CD都是相邻两边乘积,于是可联想到很容易的一道题,即

    已知:△ABC内接于⊙O,AD为△ABC中BC边上的高,AE为△ABC外接圆的直径.求证:AB·AC=AD·AE.

    这个题目是很容易证的,只要连结BE,证明△ABE∽△ADC,或连结EC,证明△ABD∽△AEC即可.这个题用语言叙述就是“三角形两边之积等于其外接圆直径与第三边上的高之积”.用这个题的结论去证例6可以发挥绝妙的作用.对例6不必再做分析就可证明.

    4.形数间的转化

    例7 矩形ABCD中,EAD上,AEEDFBC上,若EF把矩形ABCD的面积分为12,则______BFFC

     

    【点睛】同学对这样的问题总觉得不好下手.其实设一些参数,用方程易解.设BC=a,AB=b,则AE=ED=,再设BF=x,则FC=a-x

     

    根据梯形面积公式易得方程

    解得x.则ax

     

     

     

     

    相关试卷

    初中数学中考复习 专题12 数形结合思想-【口袋书】2020年中考数学背诵手册:

    这是一份初中数学中考复习 专题12 数形结合思想-【口袋书】2020年中考数学背诵手册,共8页。

    初中数学中考复习 专题11 函数思想-【口袋书】2020年中考数学背诵手册:

    这是一份初中数学中考复习 专题11 函数思想-【口袋书】2020年中考数学背诵手册,共10页。试卷主要包含了2+1 等内容,欢迎下载使用。

    初中数学中考复习 专题10 方程思想-【口袋书】2020年中考数学背诵手册:

    这是一份初中数学中考复习 专题10 方程思想-【口袋书】2020年中考数学背诵手册,共6页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map