初中数学中考复习 专题06 三角形综合(原卷版)
展开
这是一份初中数学中考复习 专题06 三角形综合(原卷版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
《2020中考数学考前重难点限时训练》专题06 三角形综合限时:45分钟一、选择题(本大题共7道小题)1. 如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是 ( )A.50° B.60° C.70° D.80°2. 如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,点E,F,G,H分别是AB,BD,CD,AC的中点,则四边形EFGH的周长为( )A.12 B.14 C.24 D.213. 在△ABC中,若一个内角等于另两个内角的差,则 ( )A.必有一个内角等于30° B.必有一个内角等于45°C.必有一个内角等于60° D.必有一个内角等于90°4. 如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是 ( )A.0.5 B.1 C.1.5 D.25. 如图,在△ABC和△DEC中,AB=DE,再添加两个条件使△ABC≌△DEC,不能添加的一组条件是 ( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=EC,∠A=∠D D.∠B=∠E,∠A=∠D6. 将一副直角三角板按如图所示的位置摆放,若含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是 ( )A.45° B.60° C.75° D.85°7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为 ( )A.a+c B.b+c C.a-b+c D.a+b-c二、填空题(本大题共4道小题)8. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为 . 9. 如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD交于点O,则∠AOB的度数为 . 10. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k= . 11. 在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF= . 三、解答题(本大题共5道小题)12. 如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.
13. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.
14. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.
15. 如图,在△ABC中,AB=AC,∠BAC=90°,点D是射线BC上一动点,连接AD,以AD为直角边,在AD的上方作等腰直角三角形ADF.(1)如图①,当点D在线段BC上时(不与点B重合),求证:△ACF≌△ABD;(2)如图②,当点D在线段BC的延长线上时,猜想CF与BD的数量关系和位置关系,并说明理由.
16. (1)如图①,在四边形ABCD中,AB∥DC,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系为 ; (2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.①②
相关试卷
这是一份初中数学中考复习 专题11 三角形(原卷版),共9页。试卷主要包含了三角形,三边关系,中线,角平分线,三角形的稳定性,多边形内角和公式,多边形的外角和,多边形对角线的条数等内容,欢迎下载使用。
这是一份初中数学中考复习 专题10 圆的综合运用(原卷版),共14页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题07 三角形综合(原卷版),共11页。试卷主要包含了填空题等内容,欢迎下载使用。