初中数学中考复习 专题06 一次函数问题(原卷版)
展开决胜2021中考数学压轴题全揭秘精品
专题 06一次函数的应用问题
【典例分析】
【考点1】行程问题
【例1】(2020·黑龙江牡丹江·中考真题)在一条公路上依次有A,B,C三地,甲车从A地出发,驶向C地,同时乙车从C地出发驶向B地,到达B地停留0.5小时后,按原路原速返回C地,两车匀速行驶,甲车比乙车晚1.5小时到达C地.两车距各自出发地的路程y(千米)与时间x(小时)之间的函数关系如图所示.请结合图象信息解答下列问题:
(1)甲车行驶速度是___________千米1时,B,C两地的路程为___________千米;
(2)求乙车从B地返回C地的过程中,y(千米)与x(小时)之间的函数关系式(不需要写出自变量x的取值范围);
(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.
【变式1-1】(2020·辽宁大连·中考真题)甲、乙两个探测气球分别从海拔和处同时出发,匀速上升.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:)的函数图象.
(1)求这两个气球在上升过程中y关于x的函数解析式;
(2)当这两个气球的海拔高度相差时,求上升的时间.
【变式1-2】(2020·湖北省直辖县级单位·中考真题)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段表示小华和商店的距离(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:
(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;
(2)直接写出妈妈和商店的距离(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;
(3)求t为何值时,两人相距360米.
【考点2】方案选择问题
【例2】(湖南常德·中考真题)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?
【变式2-1】(2020·天津河东·初三一模)下表中给出,,三种手机通话的收费方式.
收费方式 | 月通话费/元 | 包时通话时间/ | 超时费/(元/) |
不限时 |
|
(1)设月通话时间为小时,则方案,,的收费金额,,都是的函数,请分别求出这三个函数解析式.
(2)填空:
若选择方式最省钱,则月通话时间的取值范围为______;
若选择方式最省钱,则月通话时间的取值范围为______;
若选择方式最省钱,则月通话时间的取值范围为______;
(3)小王、小张今年月份通话费均为元,但小王比小张通话时间长,求小王该月的通话时间.
【变式2-2】(2020·新疆初三三模)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
【考点3】最大利润问题
【例3】(2020·贵州铜仁·中考真题)某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
【变式3-1】(2020·山东济南·中考真题)5G时代的到来,将给人类生活带来巨大改变.现有A、B两种型号的5G手机,进价和售价如表所示:型号价格
| 进价(元/部) | 售价(元/部) |
A | 3000 | 3400 |
B | 3500 | 4000 |
某营业厅购进A、B两种型号手机共花费32000元,手机销售完成后共获得利润4400元.
(1)营业厅购进A、B两种型号手机各多少部?
(2)若营业厅再次购进A、B两种型号手机共30部,其中B型手机的数量不多于A型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?
【变式3-2】(2020·全国初三其他)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象(如图),图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是 件,日销售利润是 元;
(2)求y与x之间的函数关系式,并写出x的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
【考点4】几何问题
【例4】(2020·河北中考真题)表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.
-1 | 0 | |
-2 | 1 |
(1)求直线的解析式;
(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;
(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.
【变式4-1】(2020·山东菏泽·中考真题)如图,一次函数的图象与反比例函数的图象相交于,两点.
(1)求一次函数和反比例函数的表达式;
(2)直线交轴于点,点是轴上的点,若的面积是,求点的坐标.
【变式4-2】(2020·江苏南通·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
1.(2020·四川内江·中考真题)将直线向上平移两个单位,平移后的直线所对应的函数关系式为( )
A. B. C. D.
2.(2020·贵州遵义·中考真题)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1、S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )
A. B.
C. D.
3.(2020·湖北孝感·中考真题)如图,在四边形中,,,,,.动点沿路径从点出发,以每秒1个单位长度的速度向点运动.过点作,垂足为.设点运动的时间为(单位:),的面积为,则关于的函数图象大致是( )
A. B.
C. D.
4.(2020·陕西中考真题)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )
A.2 B.3 C.4 D.6
5.(2020·湖南永州·中考真题)已知点和直线,求点P到直线的距离d可用公式计算.根据以上材料解决下面问题:如图,的圆心C的坐标为,半径为1,直线l的表达式为,P是直线l上的动点,Q是上的动点,则的最小值是( )
A. B. C. D.2
6.(2020·辽宁鞍山·中考真题)如图,在平面直角坐标系中,点在x轴正半轴上,点在直线上,若,且均为等边三角形,则线段的长度为( )
A. B. C. D.
7.(2020·四川绵阳·中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)
8.(2020·湖南益阳·中考真题)某公司新产品上市天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__________元.
9.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.
10.(2020·湖南湘西·中考真题)在平面直角坐标系中,O为原点,点,点B在y轴的正半轴上,.矩形的顶点D,E,C分别在上,.将矩形沿x轴向右平移,当矩形与重叠部分的面积为时,则矩形向右平移的距离为___________.
11.(2020·辽宁鞍山·中考真题)如图,在平面直角坐标系中,已知,在x轴上取两点C,D(点C在点D左侧),且始终保持,线段在x轴上平移,当的值最小时,点C的坐标为________.
12.(2020·宁夏中考真题)如图,直线与x轴、y轴分别交于A、B两点,把绕点B逆时针旋转90°后得到,则点的坐标是_____.
13.(2020·山东潍坊·中考真题)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求y与x之间的函数表达式;
(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)
14.(2020·辽宁铁岭·中考真题)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量(本)与销售单价(元)之间满足一次函数关系,三对对应值如下表:
销售单价(元) | 12 | 14 | 16 |
每周的销售量(本) | 500 | 400 | 300 |
(1)求与之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为元(,且为整数),设每周销售该款笔记本所获利润为元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
15.(2020·四川中考真题)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.
(1)甲乙两个工程队每天各需工程费多少元?
(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.
①甲乙两工程队分别工作的天数共有多少种可能?
②写出其中费用最少的一种方案,并求出最低费用.
16.(2020·湖北荆门·中考真题)2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为,销售量y(千克)与x之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)当月第几天,该农产品的销售额最大,最大销售额是多少?
(销售额=销售量×销售价格)
17.(2020·黑龙江鹤岗·中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克元,售价每千克16元;乙种蔬菜进价每千克元,售价每千克18元.
(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求,的值.
(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜千克,求有哪几种购买方案.
(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的利润率不低于20%,求的最大值.
18.(2020·云南中考真题)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到地和地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
目的地 车型 | 地(元/辆) | 地(元/辆) |
大货车 | 900 | 1000 |
小货车 | 500 | 700 |
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往地,其余前往地,设前往地的大货车有辆,这20辆货车的总运费为元.
(1)这20辆货车中,大货车、小货车各有多少辆?
(2)求与的函数解析式,并直接写出的取值范围;
(3)若运往地的物资不少于140吨,求总运费的最小值.
19.(2020·江苏南通·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
20.(2020·广西中考真题)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出型和型两款垃圾分拣机器人,已知台型机器人和台型机器人同时工作共分拣垃圾吨,台型机器人和台型机器人同时工作共分拣垃圾吨.
(1)1台型机器人和台型机器人每小时各分拣垃圾多少吨?
(2)某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾吨.设购买型机器人台,型机器人台,请用含的代数式表示;
(3)机器人公司的报价如下表:
型号 | 原价 | 购买数量少于台 | 购买数量不少于台 |
型 | 万元/台 | 原价购买 | 打九折 |
型 | 万元/台 | 原价购买 | 打八折 |
在的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.
初中数学中考复习 专题52 中考数学最值问题(原卷版): 这是一份初中数学中考复习 专题52 中考数学最值问题(原卷版),共10页。试卷主要包含了解决几何最值问题的要领,解决代数最值问题的方法要领等内容,欢迎下载使用。
初中数学中考复习 专题32 中考几何平移类问题(原卷版): 这是一份初中数学中考复习 专题32 中考几何平移类问题(原卷版),共11页。试卷主要包含了平移的定义,平移的特点,理解并掌握平移的三个特征,图形平移的画法等内容,欢迎下载使用。
初中数学中考复习 专题30 尺规作图问题(原卷版): 这是一份初中数学中考复习 专题30 尺规作图问题(原卷版),共16页。试卷主要包含了尺规作图的定义,尺规作图的五种基本情况,对尺规作图题解法,中考要求等内容,欢迎下载使用。