


初中数学中考复习 专题02(上海市专用)(解析版)-2021年31个地区中考数学精品模拟试卷
展开
这是一份初中数学中考复习 专题02(上海市专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共17页。
2021上海市中考数学精品模拟试卷
(满分150分,答题时间120分钟)
一、选择题〔共6小题,每题4分,共24分。下列选项中有且只有一个选项是正确的,选择正确选项的代号并填涂在答题纸的相应位置上〕
1.若x+y=2,z﹣y=﹣3,则x+z的值等于( )
A.5 B.1 C.﹣1 D.﹣5
【答案】C
【解析】已知两等式左右两边相加即可求出所求.
∵x+y=2,z﹣y=﹣3,
∴(x+y)+(z﹣y)=2+(﹣3),
整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,
则x+z的值为﹣1.
2.小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是( )
A.中位数是36.5℃ B.众数是36.2°C
C.平均数是36.2℃ D.极差是0.3℃
【答案】B
【解析】根据中位数、众数、平均数、极差的计算方法,分别求出结果即可.
把小红连续5天的体温从小到大排列得,36.2,36.2,36.3.36.5,36.6,
处在中间位置的一个数是36.3℃,因此中位数是36.3℃;
出现次数最多的是36.2℃,因此众数是36.2℃;
平均数为:x=(36.2+36.2+36.3+36.5+36.6)÷5=36.36℃,
极差为:36.6﹣36.2=0.4℃
3.不等式组2x-1≤3,x+1>2的解集在数轴上表示为( )
A. B.
C. D.
【答案】C
【解析】先求出不等式组的解集,再在数轴上表示出来即可.
解不等式2x﹣1≤3,得:x≤2,
解不等式x+1>2,得:x>1,
∴不等式组的解集为1<x≤2,
表示在数轴上如下:
4.下列等式成立的是( )
A.3+42=72 B.3×2=5 C.3÷16=23 D.(-3)2=3
【答案】D
【解析】A.3与42不是同类二次根式,不能合并,此选项计算错误;
B.3×2=6,此选项计算错误;
C.3÷16=3×6=32,此选项计算错误;
D.(-3)2=3,此选项计算正确。
5.下列图形中,既是轴对称图形又是中心对称图形的是( )
A B C D
【答案】D.
【解析】A.不是轴对称图形,是中心对称图形,故本选项错误;
B.是轴对称图形,不是中心对称图形,故本选项错误;
C.是轴对称图形,不是中心对称图形,故本选项错误;
D.是轴对称图形,也是中心对称图形,故本选项正确.
6.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BC上任意一点.则∠CED的大小可能是( )
A.10° B.20° C.30° D.40°
【答案】C
【解析】连接OD、OE,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,根据等腰三角形的性质和三角形内角和定理求出∠DEO和∠CEO,即可求出答案.
连接OD、OE,
∵OC=OA,
∴△OAC是等腰三角形,
∵点D为弦的中点,
∴∠DOC=40°,∠BOC=100°,
设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,
∵OC=OE,∠COE=100°﹣x,
∴∠OEC=∠OCE=40°+12x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+12x,
∴∠CED=∠OEC﹣∠OED>(40°+12x)﹣(20°+12x)=20°,
∵∠CED<∠ABC=40°,
∴20°<∠CED<40°
二、填空题〔共12小题,每题4分,共48分。请将结果直接填入答题纸相应位置上〕
7.计算:(π﹣1)0+|﹣2|= .
【答案】3
【解析】(π﹣1)0+|﹣2|=1+2=3
【点拨】根据零次幂和绝对值的意义,进行计算即可.
8.分解因式:xy2﹣4x= .
【答案】x(y+2)(y﹣2)
【解析】原式提取x,再利用平方差公式分解即可.
原式=x(y2﹣4)=x(y+2)(y﹣2)
9.若一次函数y=2x+2的图象经过点(3,m),则m= .
【答案】8
【解析】利用一次函数图象上点的坐标特征可求出m的值,此题得解.
∵一次函数y=2x+2的图象经过点(3,m),
∴m=2×3+2=8.
10.方程2x+10=0的解是 .
【答案】x=﹣5.
【分析】方程移项,把x系数化为1,即可求出解.
【解析】方程2x+10=0,
移项得:2x=﹣10,
解得:x=﹣5.
11.三角形的两边长分别为4和7,第三边的长是方程x2﹣8x+12=0的解,则这个三角形的周长是 .
【答案】17
【分析】先利用因式分解法解方程得到x1=2,x2=6,再根据三角形三边的关系得到三角形第三边长为3,然后计算三角形的周长.
【解析】x2﹣8x+12=0,
(x﹣2)(x﹣6)=0,
解得:x1=2,x2=6,
若x=2,即第三边为2,4+2=6<7,不能构成三角形,舍去;
当x=6时,这个三角形周长为4+7+6=17,
12.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为 .
【答案】(﹣1,4).
【分析】把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.
【解析】∵y=﹣x2﹣2x+3
=﹣(x2+2x+1﹣1)+3
=﹣(x+1)2+4,
∴顶点坐标为(﹣1,4).
13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是 .
【答案】14.
【解析】用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.
自由转动转盘两次,指针所指区域所有可能出现的情况如下:
共有16种可能出现的结果,其中两次颜色相同的有4种,
∴P(两次颜色相同)=416=14
14.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g)如表,若甲、乙两个样本数据的方差分别为S甲2、S乙2,则S甲2 S乙2(填“>“、“=”、“<”)
质量
70
71
72
73
甲
1
4
1
0
乙
3
2
0
1
【答案】<.
【解析】分别计算甲、乙的方差,比较得出答案.
∵x甲=70+71×4+726=71,x乙=70×3+71×2+736=4256,
∴S甲2=16[(70﹣71)2+(72﹣71)2]=13,
S乙2=16[(70-4256)2×3+(71-4256)2×2+(73-4256)2]=14216,
∵14216>13,
∴S甲2<S乙2
15.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为 .
【答案】93.
【解析】根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.
作CH⊥AB于点H,
∵在▱ABCD中,∠B=60°,BC=8,
∴CH=43,
∵四边形ECGF是平行四边形,
∴EF∥CG,
∴△EOD∽△GOC,
∴EOGO=DOOC=EDGC,
∵DF=14DE,
∴DEEF=45,
∴EDGC=45,
∴EOGO=45,
∴当EO取得最小值时,EG即可取得最小值,
当EO⊥CD时,EO取得最小值,
∴CH=EO,
∴EO=43,
∴GO=53,
∴EG的最小值是93,
16.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH= .
【解析】1.
【分析】由三等分点的定义与平行线的性质得出BE=DE=AD,BF=GF=CG,AH=HF,DH是△AEF的中位线,易证△BEF∽△BAC,得EFAC=BEAB,解得EF=2,则DH=12EF=1.
【解析】∵D、E为边AB的三等分点,EF∥DG∥AC,
∴BE=DE=AD,BF=GF=CG,AH=HF,
∴AB=3BE,DH是△AEF的中位线,
∴DH=12EF,
∵EF∥AC,
∴△BEF∽△BAC,
∴EFAC=BEAB,即EF6=BE3BE,
解得:EF=2,
∴DH=12EF=12×2=1,
17.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 .
【答案】6
【解析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.
∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,
∴EF=2,
∵DE∥AB,DF∥AC,
∴△DEF是等边三角形,
∴剪下的△DEF的周长是2×3=6.
18.如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB= .
【答案】23.
【分析】依据△A1DB1≌△A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=12BC=2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长.
【解答】解:由折叠可得,A1D=AD=4,∠A=∠EA1D=90°,∠BA1E=∠B1A1E,BA1=B1A1,∠B=∠A1B1E=90°,
∴∠EA1B1+∠DA1B1=90°=∠BA1E+∠CA1D,
∴∠DA1B1=∠CA1D,
又∵∠C=∠A1B1D,A1D=A1D,
∴△A1DB1≌△A1DC(AAS),
∴A1C=A1B1,
∴BA1=A1C=12BC=2,
∴Rt△A1CD中,CD=42-22=23,
∴AB=23,
故答案为:23.
三、解答题〔共7小题,满分共78分〕
19.计算:(12)﹣2﹣|2-3|+2tan45°﹣(2021﹣π)0
【答案】见解析。
【解析】先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;
(12)﹣2﹣|2-3|+2tan45°﹣(2021﹣π)0
=4+2-3+2×1﹣1
=4+2-3+2﹣1
=2+2
20.解分式方程:.
【答案】x=3
【解析】先去分母,将分式方程转化为整式方程,再解整式方程,最后注意要检验.
原方程可化为:3+x2-x=x2,
解得x=3.
检验:当x=3时,x(x-1)≠0,
所以,原分式方程的解为x=3.
21.如图,在△ABC中,∠C=90°,tanA=33,∠ABC的平分线BD交AC于点D,CD=3,求AB的长?
【答案】见解析。
【分析】根据∠C=90°,tanA=33,可求出∠A=30°,∠ABC=60°,再根据BD是∠ABC的平分线,求出∠CBD=∠ABD=30°,在不同的直角三角形中,根据边角关系求解即可.
【解析】在Rt△ABC中,∠C=90°,tanA=33,
∴∠A=30°,∠ABC=60°,
∵BD是∠ABC的平分线,
∴∠CBD=∠ABD=30°,
又∵CD=3,
∴BC=CDtan30°=3,
在Rt△ABC中,∠C=90°,∠A=30°,
∴AB=BCsin30°=6.
答:AB的长为6.
22.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:
(1)截止到6月9日,该商店销售这种水果一共获利多少元?
(2)求图象中线段BC所在直线对应的函数表达式.
日期
销售记录
6月1日
库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).
6月9日
从6月1日至今,一共售出200kg.
6月10、11日
这两天以成本价促销,之后售价恢复到10元/kg.
6月12日
补充进货200kg,成本价8.5元/kg.
6月30日
800kg水果全部售完,一共获利1200元.
【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;
(2)设B点坐标为(a,400),根据题意列方程求出点B的坐标,设线段BC所在直线对应的函数表达式为y=kx+b,利用待定系数法解答即可.
【解析】(1)200×(10﹣8)=400(元)
答:截止到6月9日,该商店销售这种水果一共获利400元;
(2)设点B坐标为(a,400),根据题意得:
(10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,
解这个方程,得a=350,
∴点B坐标为(350,400),
设线段BC所在直线对应的函数表达式为y=kx+b,则:
350k+b=400800k+b=1200,解得k=169b=-20009,
∴线段BC所在直线对应的函数表达式为y=169x-20009.
23.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.
(1)求证:四边形BNDM是菱形;
(2)若BD=24,MN=10,求菱形BNDM的周长.
【答案】见解析。
【解析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM是平行四边形,进而得出结论;
(2)由菱形的性质得出BM=BN=DM=DN,OB=12BD=12,OM=12MN=5,由勾股定理得BM=13,即可得出答案.
(1)证明:∵AD∥BC,
∴∠DMO=∠BNO,
∵MN是对角线BD的垂直平分线,
∴OB=OD,MN⊥BD,
在△MOD和△NOB中,∠DMO=∠BNO∠MOD=∠NOBOD=OB,
∴△MOD≌△NOB(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BNDM是平行四边形,
∵MN⊥BD,
∴四边形BNDM是菱形;
(2)解:∵四边形BNDM是菱形,BD=24,MN=10,
∴BM=BN=DM=DN,OB=12BD=12,OM=12MN=5,
在Rt△BOM中,由勾股定理得:BM=OM2+OB2=52+122=13,
∴菱形BNDM的周长=4BM=4×13=52.
24. 如图,已知点、,点P为线段AB上的一个动点,反比例函数的图像经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
【答案】(1)①;②不完全同意小明的说法;理由见详解;当时,有最大值;当时,有最小值;(2);
【解析】(1)①直接利用待定系数法,即可求出函数的表达式;
②由①得直线AB为,则,利用二次函数的性质,即可求出答案;
(2)根据题意,求出直线AB的直线为,设点P为(x,),则得到,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴,即可求出n的取值范围.
解:(1)当时,点B为(5,1),
①设直线AB为,则
,解得:,
∴;
②不完全同意小明的说法;理由如下:
由①得,
设点P为(x,),由点P在线段AB上则
,
∴;
∵,
∴当时,有最大值;
当时,有最小值;
∴点P从点A运动至点B的过程中,k值先增大后减小,当点P在点A位置时k值最小,在的位置时k值最大.
(2)∵、,
设直线AB为,则
,解得:,
∴,
设点P为(x,),由点P在线段AB上则
,
当,即n=2时,,则k随x的增大而增大,如何题意;
当n≠2时,则对称轴为:;
∵点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.
即k在中,k随x的增大而增大;
当时,有
∴,解得:,
∴不等式组的解集为:;
当时,有
∴,解得:,
∴综合上述,n的取值范围为:.
【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.
25.如图1,已知点O在四边形ABCD的边AB上,且,OC平分,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:;
(2)如图2,若,求值;
(3)当四边形ABCD的周长取最大值时,求的值.
【答案】(1)见详解;(2);(3)
【解析】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数,平行线的判定与性质,等腰三角形的性质,二次函数的性质,涉及的知识点比较复杂,综合性较强,灵活运用这些知识点是解题关键.
(1)由三角形外角可得∠BOD=∠DAO+∠ODA,
∵OA=OD,
∴∠DAO=∠ODA,
∵OC平分∠BOD,
∴∠COD=∠COB,
∴∠COD=∠ODA,
∴OC∥AD;
(2)∵OC平分,
∴∠COD=∠COB,
在△BOG与△DOG中,
∴△BOG≌△DOG,
∴∠BGO=∠DGO=90°,
∵AD∥OC,
∴∠ADB=∠OGB=90°,∠DAC=∠OCA,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∵DE=DF,
∴∠DFE=∠DEF,
∵∠DFE=∠AFO,
∴∠AFO=∠DEF,
∴△AFO∽△AED,
∴∠AOD=∠ADB=90°,,
∵OA=OD=2,
∴根据勾股定理可得AD=2,
∴=;
(3)∵OA=OB,OC∥AD,
∴根据三角形中位线可设AD=2x,OG=x,则CG=2-x,BG==,
∴BC===CD,
∴四边形ABCD的周长=AB+AD+DC+BC
=4+2x+2
=4+2x+4
令=t≥0,即x=2-t2,
∴四边形ABCD的周长=4+2x+4
=4+2(2-t2)+4t
=-2t2+4t+8
=-2(t-1)2+10,
当t=1时,四边形ABCD的周长取得最大值,最大值为10,
此时x=2-t2=1,
∴AD=2,
∵OC∥AD,
∴∠ADF=∠COF,∠DAF=∠OCF,
∵AD=OC=2,
∴△ADF≌△COF
∴DF=OF=OD=1,
∵AD=OC=OA=OD,
∴△ADO是等边三角形,
由(2)可知∠DAF=∠OAF,∠ADE=90°,
∴在Rt△ADE中,∠DAE=30°,
∴,
∴DE=,
∴=.
相关试卷
这是一份初中数学中考复习 专题13(河南专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共17页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题12(河北专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题06(福建专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
