备战2023数学新中考二轮复习考点精讲精练(河北专用)突破11 相交线与平行线、图形的变换
展开基本性质
1. 直线的性质:经过两点有且只有一条直线.简单说成:两点确定一条直线.
比较线段的长短
1. “作一条线段等于已知线段”的两种方法:
方法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.
方法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.
2.线段的比较:
(1)度量法:用刻度尺量出两条线段的长度,再比较长短.
(2)叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:
3.线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,点C是线段AB的中点,则,或AB=2AC=2BC.
考点解读
考点一:邻补角与对顶角
邻补角:有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
对顶角:有一个公共顶点,一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
注:对顶角相等。
如:∠1和∠2互为邻补角,∠2和∠3互为对顶角。
考点二:垂线
(1)定义:两直线相交所构成的四个角中有一个角是直角时,我们就说这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,它们的交点叫做垂足。
(2)性质:在同一平面内,过一点有且只有一条直线与已知直线垂直;
连接直线外一点与直线上各点的所有线段中,垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
考点三:同位角、内错角、同旁内角
如图,∠1和∠4是同位角,∠3和∠4是内错角,∠2和∠4是同旁内角。
考点四:平行线
(1)定义:在平面内不相交的两条直线叫做平行线。
(2)平行公理
经过直线外一点,有且只有一条直线与这条直线平行;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
(3)平行线的性质
两直线平行,同位角相等,内错角相等,同旁内角互补。
两条平行线被第三条直线所截,同位角相等;
两条平行线被第三条直线所截,内错角相等;
两条平行线被第三条直线所截,同旁内角互补。
(4)平行线的判定
同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
考点五:图形的变换
1、平移
(1)定义:把一个图形沿着某一直线方向移动,这种图形的平行移动,简称为平移。
(2)平移的性质:平移后的图形与原图形全等;对应角相等;对应点所连的线段平行(或在同一条直线上)且相等。
(3)坐标的平移:点(x,y)向右平移a个单位长度后的坐标变为(x+a,y);
点(x,y)向左平移a个单位长度后的坐标变为(x-a,y);
点(x,y)向上平移a个单位长度后的坐标变为(x,y+a);
点(x,y)向下平移a个单位长度后的坐标变为(x,y-a)。
2、轴对称
(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
(2)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形。这条直线叫做它的对称轴。
(3)轴对称的性质:关于某条直线对称的图形是全等形。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(4)线段垂直平分线的性质
线段垂直平分线上的点到这条线段两个端点的距离相等;
与一条线段两个端点距离相等的点,在线段的垂直平分线上。
(5)坐标与轴对称:点(x,y)关于x轴对称的点的坐标是(x,-y);
点(x,y)关于y轴对称的点的坐标是(-x, y);
3、旋转
(1)旋转
定义:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。点O叫做旋转中心,转动的角叫做旋转角。如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前后的图形全等。
(2)中心对称
定义:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称。这个点叫做对称中心。这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点。
中心对称的性质:①中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;②中心对称的两个图形是全等图形。
(3)中心对称图形
定义:如果一个图形绕一个点旋转180°后能与自身重合,那么这个图形叫做中心对称图形。这个点叫做它的对称中心。
(4)关于原点对称的点的坐标
两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点为 P′(-x,-y)。
考点突破
1.(2021·河北·景县教研室七年级期末)如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为( )
A.(南偏西50°,35海里)B.(北偏西40°,35海里)
C.(北偏东50°,35海里)D.(北偏东40°,35海里)
2.(2021·河北保定·八年级期末)如图,在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则PF的最小值是( )
A.1.5B.2C.2.4D.2.5
3.(2021·河北唐山·七年级期末)如图,在下列给出的条件中,可以判定的有( )
①;②;③;④;⑤.
A.①②③B.①②④C.①④⑤D.②③⑤
4.(2021·河北·安新县教师发展中心七年级期末)如图,OE⊥AB,直线CD经过点O,∠COA=35°,则∠BOD的余角度数为( )
A.35°B.45°C.55°D.60°
5.(2022·河北承德·七年级期末)如图,在方格纸中,将绕点按顺时针方向旋转90°后得到,则下列四个图形中正确的是( )
A.B.C.D.
6.(2022·河北保定·九年级期末)如图,在四边形ABCD中,,,O为对角线BD的中点,,,,则等于( )
A.B.C.D.
7.(2021·河北·献县教育体育局教研室八年级期末)如图,下列图案是我国几家银行的标志,其中轴对称的图形有( )
A.1个B.2个C.3个D.4个
8.(2022·河北承德·八年级期末)第24届冬奥会将于2022年2月4日-2月20日在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,共中是轴对称图形的为( )
A.B.C.D.
9.(2022·河北石家庄·八年级期末)已知是等边三角形,点D在射线BC上(与点B,C不重合),点D关于直线的对称点为点E.
(1)如图1,连接,,,当时,根据边的关系,可判定的形状是___________三角形;
(2)如图2,当点D在延长线上时,连接,,,,延长到点G,使,连接,交于点F,F为的中点.若,则的长为___________.
10.(2021·河北秦皇岛·七年级期中)如图,∠AOB=90°,把∠AOB顺时针旋转后得到∠COD,已知∠COB=35°,则∠AOD的度数为______.
11.(2021·河北唐山·九年级期中)如图,为了测量河宽(假设河的两岸平行),在河的彼岸选择一点,点看点仰角为,点看点仰角为,若,则河宽为________(结果保留根号).
12.(2021·河北石家庄·九年级期中)如图,在矩形中,,垂足为点.若,,则的长为______.
13.(2022·河北承德·八年级期末)如图,点A,B在直线的同侧,点A到的距离,点B到的距离,已知,P是直线上的一个动点,记的最小值为a,的最大值为b.
(1)________;
(2)________.
14.(2021·河北石家庄·八年级期中)以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.
15.(2021·河北唐山·九年级期中)在中,,,,则的长为________.
16.(2021·河北沧州·八年级期中)如图,在中,,,将其折叠,是点落在边上的点,折痕为.
(1)的度数为__________.
(2)的度数为__________.
17.(2021·河北唐山·九年级期中)如图,为了固定一棵珍贵的古树,在树干处向地面引钢管,与地面夹角为,向高的建筑物引钢管,与水平面夹角为建筑物离古树的距离,求钢管的长(结果保留整数,参考数据:,)
18.(2021·河北承德·八年级期末)如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.
(1)求小明家离小红家的距离;
(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.
19.(2021·河北·石家庄市第四十一中学九年级期中)教育部颁布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度,米,米(测角器的高度忽略不计,结果精确到0.1米,参考数据:,,,,)
(1)求点B距水平地面AE的高度;
(2)若市政规定广告牌的高度不得大于7米,请问该公司的广告牌是否符合要求,并说明理由.
20.(2021·河北石家庄·九年级期中)如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.
(1)当点在上时,求点与点的最短距离;
(2)若点在上,且将的面积分成上下4:5两部分时,求的长;
(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);
(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长.
21.(2022·河北邢台·九年级期末)如图1,有一个圆心角为240°,半径为2的扇形,它可以在矩形内部通过移转(即平移或旋转)的方式运动,已知,.
(1)______;
(2)如图2所示,当扇形与切于点,、均落在上时,求与、所围成图形的面积;
(3)已知点在边上,在边上,且、均不与点重台,的中点为,若取小值时,求的长.
22.(2021·河北·石家庄外国语学校九年级期中)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.
(1)求证:△BDE∽△EFC.
(2)设,
①若BC=12,求线段BE的长;
②若△EFC的面积是20,求△ABC的面积.
23.(2021·河北石家庄·八年级期末)如图, AB=CD,AE⊥BC于E,DF⊥BC于F,AE=DF.
求证:(1)CE=BF;(2)AB//CD.
24.(2021·河北·邯郸市永年区第八中学八年级阶段练习)如图,有以下四个条件:①AC∥DE,②DC∥EF,③CD平分∠BCA,④EF平分∠BED.
(1)若CD平分∠BCA,AC∥DE,DC∥EF,求证:EF平分∠BED.
(2)除(1)外,请再选择四个条件中的三个作为题设,余下的一个作为结论,写出一个真命题,再给予证明.
25.(2021·河北唐山·七年级期末)三角形ABC在平面直角坐标系中的位置如图所示,点O为坐标原点,A(-1,4),B(-4,-1),C(1,1).将三角形ABC向右平移3个单位长度,再向下平移2个单位长度得到三角形A1B1C1.
(1)画出平移后的三角形;
(2)直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );
(3)请直接写出三角形的面积为 .
备战2023数学新中考二轮复习考点精讲精练(河北专用)突破16 圆: 这是一份备战2023数学新中考二轮复习考点精讲精练(河北专用)突破16 圆,文件包含备战2023数学新中考二轮复习考点精讲精练河北专用突破16圆解析版docx、备战2023数学新中考二轮复习考点精讲精练河北专用突破16圆原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
备战2023数学新中考二轮复习考点精讲精练(河北专用)突破13 图形的相似: 这是一份备战2023数学新中考二轮复习考点精讲精练(河北专用)突破13 图形的相似,文件包含备战2023数学新中考二轮复习考点精讲精练河北专用突破13图形的相似解析版docx、备战2023数学新中考二轮复习考点精讲精练河北专用突破13图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
备战2023数学新中考二轮复习考点精讲精练(河北专用)突破08 二次函数: 这是一份备战2023数学新中考二轮复习考点精讲精练(河北专用)突破08 二次函数,文件包含备战2023数学新中考二轮复习考点精讲精练河北专用突破08二次函数解析版docx、备战2023数学新中考二轮复习考点精讲精练河北专用突破08二次函数原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。