所属成套资源:2022年中考数学分类汇编
2022年中考数学分类汇编22讲专题05 一次方程
展开这是一份2022年中考数学分类汇编22讲专题05 一次方程,文件包含专题05一次方程-组与一元二次方程-老师版docx、专题05一次方程-组与一元二次方程-学生版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
专题05 一次方程(组)与一元二次方程
一.选择题
1.(2022·内蒙古包头)若是方程的两个实数根,则的值为( )
A.3或 B.或9 C.3或 D.或6
【答案】A
【分析】结合根与系数的关系以及解出方程进行分类讨论即可得出答案.
【详解】解:∵,
∴,
,则两根为:3或-1,
当时,,
当时,,故选:A.
【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.
2.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )
A.8 B.10 C.7 D.9
【答案】B
【分析】设有x支队伍,根据题意,得,解方程即可.
【详解】设有x支队伍,根据题意,得,
解方程,得x1=10,x2=-9(舍去),故选B.
【点睛】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是解题的关键.
3.(2022·四川雅安)若关于x的一元二次方程x2+6x+c=0配方后得到方程(x+3)2=2c,则c的值为( )
A.﹣3 B.0 C.3 D.9
【答案】C
【分析】先移项把方程化为再配方可得结合已知条件构建关于c的一元一次方程,从而可得答案.
【详解】解:x2+6x+c=0,
移项得:
配方得: 而(x+3)2=2c,
解得: 故选C
【点睛】本题考查的是配方法,掌握“配方法解一元二次方程的步骤”是解本题的关键.
4.(2022·贵州黔东南)已知关于的一元二次方程的两根分别记为,,若,则的值为( )
A.7 B. C.6 D.
【答案】B
【分析】根据根与系数关系求出=3,a=3,再求代数式的值即.
【详解】解:∵一元二次方程的两根分别记为,,
∴+=2,
∵,
∴=3,
∴·=-a=-3,
∴a=3,
∴.故选B.
【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.
5.(2022·广西梧州)一元二次方程的根的情况( )
A.有两个相等的实数根 B.有两个不相等的实数根 C.没有实数根 D.无法确定
【答案】B
【分析】根据判别式即可判断求解.
【详解】解:由题意可知:,
∴,
∴方程由两个不相等的实数根,故选:B.
【点睛】本题考察了一元二次方程根的判别式:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
6.(2022·湖北武汉)若关于x的一元二次方程有两个实数根,,且,则( )
A.2或6 B.2或8 C.2 D.6
【答案】A
【分析】根据一元二次方程有实数根先确定m的取值范围,再根据一元二次方程根与系数的关系得出,把变形为,再代入得方程,求出m的值即可.
【详解】解:∵关于x的一元二次方程有两个实数根,
∴,
∴
∵是方程的两个实数根,
∵,
又
∴
把代入整理得,
解得, 故选A
【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)由根与系数的关系结合,找出关于m的一元二次方程.
7.(2022·湖南郴州)一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.只有一个实数根 D.没有实数根
【答案】A
【分析】根据即可判断.
【详解】解:,,,
,
一元二次方程有两个不相等的实数根.
故选:A.
【点睛】本题主要考查利用判别式来判断一元二次方程根的个数:当时,方程有两个不相等的实数根; 当时,方程有两个相等的实数根; 当时,方程无实数根,掌握利用判别式判断方程根的方法是解题的关键.
8.(2022·广西贵港)若是一元二次方程的一个根,则方程的另一个根及m的值分别是( )
A.0, B.0,0 C., D.,0
【答案】B
【分析】直接把代入方程,可求出m的值,再解方程,即可求出另一个根.
【详解】解:根据题意,
∵是一元二次方程的一个根,
把代入,则
,
解得:;
∴,
∴,
∴,,
∴方程的另一个根是;
故选:B
【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.
9.(2022·北京)若关于的一元二次方程有两个相等的实数根,则实数的值为( )
A. B. C. D.
【答案】C
【分析】利用方程有两个相等的实数根,得到∆=0,建立关于m的方程,解答即可.
【详解】∵一元二次方程有两个相等的实数根,
∴∆=0,
∴,
解得,故C正确.
故选:C.
【点睛】此题考查利用一元二次方程的根的情况求参数,一元二次方程的根有三种情况:有两个不等的实数根时∆>0;当一元二次方程有两个相等的实数根时,∆=0;当方程没有实数根时,∆<0,正确掌握此三种情况是正确解题的关键.
10.(2022·山东临沂)方程的根是( )
A., B.,
C., D.,
【答案】B
【分析】先把方程的左边分解因式化为从而可得答案.
【详解】解:,
或
解得:
故选B
【点睛】本题考查的是利用因式分解的方法解一元二次方程,掌握“十字乘法分解因式”是解本题的关键.
11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )
A. B.
C. D.
【答案】C
【分析】通过题目可知这几个方程都是一元二次方程,因此可以通过来确定有没有实数根,即可求解
【详解】解:A、△=,有两个不相等的实数根;
B、△=,故有两个不相等的实数根;
C、△=,故没有实数根;
D、△=,故有两个不相等的实数根
故选C
12.(2022·海南)若代数式的值为6,则x等于( )
A.5 B. C.7 D.
【答案】A
【分析】根据代数式的值为6列方程计算即可.
【详解】∵代数式的值为6
∴,解得故选:A
【点睛】此题考查了解一元一次方程,根据题意列方程是解本题的关键.
13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是,高是;圆柱体底面半径是,液体高是.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )
A. B. C. D.
【答案】B
【分析】根据液体的体积不变列方程解答.
【详解】解:圆柱体内液体的体积为:
由题意得,
,
故选:B.
【点睛】本题考查一元一次方程的应用,涉及圆柱与圆锥的体积,是基础考点,掌握液体体积不变列方程是解题关键.
14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?( )
A.5 B.6 C.7 D.8
【答案】A
【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.
【详解】解:设购买毛笔x支,围棋y副,根据题意得,
15x+20y=360,即3x+4y=72,
∴y=18-x.
又∵x,y均为正整数,
∴或或或或,
∴班长有5种购买方案.故选:A.
【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.
15.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是( )
A. B.
C. D.
【答案】D
【分析】设快马x天可以追上慢马,根据路程=速度×时间,即可得出关于x的一元一次方程,此题得解.
【详解】解:设快马x天可以追上慢马,
依题意,得: 240x-150x=150×12.
故选:D.
【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
16.(2022·广西)方程3x=2x+7的解是( )
A.x=4 B.x=﹣4 C.x=7 D.x=﹣7
【答案】C
【分析】先移项再合并同类项即可得结果;
【详解】解:3x=2x+7
移项得,3x-2x=7;
合并同类项得,x=7;
故选:C.
【点睛】本题主要考查解一元一次方程,掌握一元一次方程的求解步骤是解题的关键.
17.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )
A.14 B.15 C.16 D.17
【答案】B
【分析】设小红答对的个数为x个,根据抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分,列出方程求解即可.
【详解】解:设小红答对的个数为x个,
由题意得,
解得,
故选B.
【点睛】本题主要考查了一元一次方程的应用,正确理解题意是列出方程求解是解题的关键.
18.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为根,下等草一捆为根,则下列方程正确的是( )
A. B. C. D.
【答案】C
【分析】设上等草一捆为根,下等草一捆为根,根据“卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.”列出方程组,即可求解.
【详解】解:设上等草一捆为根,下等草一捆为根,根据题意得:
.故选:C
【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:
①在一次函数的图象中,的值随着值的增大而增大;
②方程组的解为;
③方程的解为;
④当时,.
其中结论正确的个数是( )
A.1 B.2 C.3 D.4
【答案】B
【分析】由函数图象经过的象限可判断①,由两个一次函数的交点坐标可判断②,由一次函数与坐标轴的交点坐标可判断③④,从而可得答案.
【详解】解:由一次函数的图象过一,二,四象限,的值随着值的增大而减小;
故①不符合题意;
由图象可得方程组的解为,即方程组的解为;
故②符合题意;
由一次函数的图象过 则方程的解为;故③符合题意;
由一次函数的图象过 则当时,.故④不符合题意;
综上:符合题意的有②③,故选B
【点睛】本题考查的是一次函数的性质,一次函数的图象的交点坐标与二元一次方程组的解,一次函数与坐标轴的交点问题,熟练的运用数形结合的方法解题是关键.
20.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )
A.30(1+x)2=50 B.30(1﹣x)2=50
C.30(1+x2)=50 D.30(1﹣x2)=50
【答案】A
【分析】根据题意和题目中的数据,可以得到,从而可以判断哪个选项是符合题意的.
【详解】解:由题意可得,,故选:A.
【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.
二.填空题
21.(2022·湖北鄂州)若实数a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,且a≠b,则的值为 _____.
【答案】
【分析】先根据题意可以把a、b看做是一元二次方程的两个实数根,利用根与系数的关系得到a+b=4,ab=3,再根据进行求解即可.
【详解】解:∵a、b分别满足a2﹣4a+3=0,b2﹣4b+3=0,
∴可以把a、b看做是一元二次方程的两个实数根,
∴a+b=4,ab=3,
∴,
故答案为:.
【点睛】本题主要考查了分式的求值,一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.
22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.
例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:
设任意一个实数为x,令,
等式两边都乘以x,得.①
等式两边都减,得.②
等式两边分别分解因式,得.③
等式两边都除以,得.④
等式两边都减m,得x=0.⑤
所以任意一个实数都等于0.
以上推理过程中,开始出现错误的那一步对应的序号是______.
【答案】④
【分析】根据等式的性质2即可得到结论.
【详解】等式的性质2为:等式两边同乘或除以同一个不为0的整式,等式不变,
∴第④步等式两边都除以,得,前提必须为,因此错误;
故答案为:④.
【点睛】本题考查等式的性质,熟知等式的性质是解题的关键.
23.(2022·广西梧州)一元二次方程的根是_________.
【答案】或
【分析】由两式相乘等于0,则这两个式子均有可能为0即可求解.
【详解】解:由题意可知:或,
∴或,
故答案为:或.
【点睛】本题考查一元二次方程的解法,属于基础题,计算细心即可.
24.(2022·四川内江)已知x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,且=x12+2x2﹣1,则k的值为 _____.
【答案】2
【分析】根据一元二次方程根与系数的关系以及解的定义得到x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,再根据=x12+2x2﹣1,推出=4﹣k,据此求解即可.
【详解】解:∵x1、x2是关于x的方程x2﹣2x+k﹣1=0的两实数根,
∴x1+x2=2,x1•x2=k﹣1,x12﹣2x1+k﹣1=0,
∴x12=2x1﹣k+1,
∵=x12+2x2﹣1,
∴=2(x1+x2)﹣k,
∴=4﹣k,
解得k=2或k=5,
当k=2时,关于x的方程为x2﹣2x+1=0,Δ≥0,符合题意;
当k=5时,关于x的方程为x2﹣2x+4=0,Δ<0,方程无实数解,不符合题意;
∴k=2,
故答案为:2.
【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程解的定义,熟知一元二次方程根与系数的关系是解题的关键.
25.(2022·广东深圳)已知一元二次方程有两个相等的实数根,则的值为________________.
【答案】9
【分析】根据根的判别式的意义得到△,然后解关于的方程即可.
【详解】解:根据题意得△,
解得.
故答案为:9.
【点睛】本题考查了根的判别式,解题的关键是掌握一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.
【答案】20%
【分析】根据该公司5、6两个月营业额的月均增长率为x结合5月、7月营业额即可得出关于x的一元二次方程,解此方程即可得解.
【详解】解:设该公司5、6两个月营业额的月均增长率为x,根据题意得,
解得,(舍去)
所以,增长率为20%
故答案为:20%
【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x的一元二次方程是解题的关键.
27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn=_____.
【答案】1
【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m-n+4,第三行中间数字为n-6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m可得关于m,n方程组,解出即可.
【详解】如图,根据题意,可得
第二行的数字之和为:m+2+(-2)=m
可知第三行左边的数字为:m-(-4)-m=4
第一行中间的数字为:m-n-(-4)=m-n+4
第三行中间数字为m-2-(m-n+4)=n-6
第三行右边数字为:m-n-(-2)=m-n+2
再根据对角线上的三个数字之和相等且都等于m可得方程组为:
解得 ∴ 故答案为:1
【点睛】本题考查了有理数加法,列代数式,以及二元一次方程组,解题的关键是根据表格,利用每行,每列,每条对角线上的三个数之和相等列方程.
28.(2022·广西贺州)若实数m,n满足,则__________.
【答案】7
【分析】根据非负数的性质可求出m、n的值,进而代入数值可求解.
【详解】解:由题意知,m,n满足,
∴m-n-5=0,2m+n−4=0,
∴m=3,n=-2,
∴,
故答案为:7.
【点睛】此题主要考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.
29.(2022·广东)若是方程的根,则____________.
【答案】1
【分析】本题根据一元二次方程的根的定义,把x=1代入方程得到a的值.
【详解】把x=1代入方程,得1−2+a=0,
解得a=1,
故答案为:1.
【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的末知数的值.
30.(2022·江苏无锡)二元一次方程组的解为________.
【答案】
【分析】方程组利用加减消元法求出解即可.
【详解】解:.
①+②×2得:7x=14,
解得:x=2,
把x=2代入②得:2×2-y=1
解得:y=3,
所以,方程组的解为,
故答案为:.
【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
31.(2022·四川雅安)已知是方程ax+by=3的解,则代数式2a+4b﹣5的值为 _____.
【答案】1
【分析】把代入ax+by=3可得,而2a+4b﹣5,再整体代入求值即
可.
【详解】解:把代入ax+by=3可得:
,
2a+4b﹣5
.
故答案为:1
【点睛】本题考查的是二元一次方程的解,利用整体代入法求解代数式的值,掌握“方程的解的含义及整体代入的方法”是解本题的关键.
32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知,求代数式的值.”可以这样解:.根据阅读材料,解决问题:若是关于x的一元一次方程的解,则代数式的值是________.
【答案】
【分析】先根据是关于x的一元一次方程的解,得到,再把所求的代数式变形为,把整体代入即可求值.
【详解】解:∵是关于x的一元一次方程的解,
∴,
∴
.
故答案为:14.
【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解题的关键.
33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为元,购买量为千克,则购买量关于付款金额的函数解析式为______.
【答案】 3 ##
【分析】根据题意列出一元一次方程,函数解析式即可求解.
【详解】解:,
超过2千克,
设购买了千克,则,
解得,
设某人的付款金额为元,购买量为千克,则购买量关于付款金额的函数解析式为:
,
故答案为:3,.
【点睛】本题考查了一元一次方程的应用,列函数解析式,根据题意列出方程或函数关系式是解题的关键.
34.(2022·山东潍坊)方程组的解为___________.
【答案】
【分析】用①×2+②×3,可消去未知数y,求出未知数x,再把x的值代入②求出y即可.
【详解】解:,
①×2+②×3,得13x=26,
解得:x=2,
把x=2代入②,得6-2y=0,
解得y=3,
故方程组的解为.
故答案为:.
【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数,的系数与相应的常数项,即可表示方程,则 表示的方程是_______.
【答案】
【分析】根据横着的算筹为10,竖放的算筹为1,依次表示的系数与等式后面的数字,即可求解.
【详解】解: 表示的方程是
故答案为:
【点睛】本题考查了列二元一次方程组,理解题意是解题的关键.
36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.
【答案】8
【分析】设店中共有x间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.
【详解】设店中共有x间房,
由题意得,,
解得,
所以,店中共有8间房,
故答案为:8.
【点睛】本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键.
37.(2022·湖南长沙)关于的一元二次方程有两个不相等的实数根,则实数t的值为___________.
【答案】
【分析】根据关于的一元二次方程有两个不相等的实数根,可得,求解即可.
【详解】关于的一元二次方程有两个不相等的实数根,
,
,
故答案为:.
【点睛】本题考查了一元二次方程根的判别式,即一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟练掌握知识点是解题的关键.
38.(2022·江苏泰州)方程有两个相等的实数根,则m的值为__________.
【答案】1
【分析】根据方程的系数结合根的判别式,即可得出Δ=4-4m=0,解之即可得出结论.
【详解】解:∵关于x的方程x2-2x+m=0有两个相等的实数根,
∴Δ=(-2)2-4m=4-4m=0,
解得:m=1.
故答案为:1.
【点睛】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.
39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.
【答案】23.5
【分析】设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,根据“3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨”,即可得出关于x,y的二元一次方程组,再整体求得(4x+3y)即可得出结论.
【详解】解:设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,
依题意,得:,
两式相加得8x+6y=47,
∴4x+3y=23.5(吨) ,
故答案为:23.5.
【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
40.(2022·上海)解方程组的结果为_____.
【答案】
【分析】利用平方差公式将②分解因式变形,继而可得④,联立①④利用加减消元法,算出结果即可.
【详解】解:
由②,得:③,
将①代入③,得:,即④,
①+②,得:,
解得:,
①−②,得:,
解得:,
∴方程组的结果为 .
【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.
三.解答题
41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?
【答案】学生人数为7人,该书的单价为53元.
【分析】设学生人数为x人,然后根据题意可得,进而问题可求解.
【详解】解:设学生人数为x人,由题意得:
,
解得:,
∴该书的单价为(元),
答:学生人数为7人,该书的单价为53元.
【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.
42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A、B两种苗木共6000株,其中A种苗木的数量比B种苗木的数量的一半多600株.
(1)请问A、B两种苗木各多少株?
(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A种苗木50株或B种苗木30株,应分别安排多少人种植A种苗木和B种苗木,才能确保同时完成任务?
【答案】(1)A苗木的数量是2400棵,B苗木的数量是3600棵;
(2)安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.
【分析】(1)根据在基地上种植A,B两种苗木共6000株,A种苗木的数量比B种苗木的数量的一半多600株,可以列出相应的二元一次方程组,从而可以解答本题;
(2)根据题意可以列出相应的分式方程,从而可以解答本题,最后要检验.
(1)
解:设A苗木的数量是x棵,则B苗木的数量是y棵,
根据题意可得:,
解得:,
答:A苗木的数量是2400棵,B苗木的数量是3600棵;
(2)
解:设安排a人种植A苗木,则安排(350-a)人种植B苗木,
根据题意可得:,
解得,a=100,
经检验,a=100是原方程的解,
∴350-a=250,
答:安排100人种植A苗木,250人种植B苗木,才能确保同时完成任务.
【点睛】本题考查二元一次方程组的应用以及分式方程的应用,解题的关键是明确题意,列出相应的二元一次方程组.
43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.
【答案】296km/h
【分析】设高铁的速度,再表示出普通列车的速度,然后根据高铁行驶的路程+40=普通列车行驶的路程列出方程,再求出解即可.
【详解】解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x-200)km/h,
由题意得:x+40=3.5(x-200),
解得:x=296.
答:高铁的平均速度为296 km/h.
【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.
44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.
(1)求A、B两厂各运送多少吨水泥?
(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由
【答案】(1)A厂运送了250吨,B厂运送270吨;
(2);A厂运往甲地90吨,运往乙地160吨;B厂运往甲地150吨,运往乙地120吨;
【分析】(1)设A厂运送x吨,B厂运送y吨,然后列出方程组,解方程组即可得到答案;
(2)根据题意,列出w与a之间的函数关系式,然后进行整理即可,再结合B厂运往甲地的水泥最多150吨,求出总运费最低的方案.
(1)
解:根据题意,设A厂运送x吨,B厂运送y吨,则
,解得,
∴A厂运送了250吨,B厂运送270吨;
(2)
解:根据题意,则
,
整理得:;
∵B厂运往甲地的水泥最多150吨,
∴,
∴;
当时,总运费最低;
此时的方案是:
A厂运往甲地90吨,运往乙地160吨;B厂运往甲地150吨,运往乙地120吨
【点睛】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂题意,求得一次函数解析式,然后根据一次函数的性质求解.
45.(2022·广西桂林)解二元一次方程组:.
【答案】
【分析】利用加减消元法可解答.
【详解】解:
①+②得:2x=4,
∴x=2,
把x=2代入①得:2﹣y=1,
∴y=1,
∴原方程组的解为:.
【点睛】本题考查二元一次方程组的解法,熟练掌握加减消元法解二元一次方程组是解题的关键.
46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是,表示ICME-14的举办年份.
(1)八进制数3746换算成十进制数是_______;
(2)小华设计了一个进制数143,换算成十进制数是120,求的值.
【答案】(1)2022
(2)9
【分析】(1)根据八进制换算成十进制的方法即可作答;
(2)根据n进制换算成十进制的方法可列出关于n的一元二次方程,解方程即可求解.
(1)
,
故答案为:2022;
(2)
根据题意有:,
整理得:,
解得n=9,(负值舍去),
故n的值为9.
【点睛】本题考查了有理数的运算以及一元二次方程的应用等知识,根据题意列出关于n的一元二次方程是解答本题的关键.
47.(2022·江苏泰州)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?
【答案】4
【分析】根据题意设道路的宽应为x米,则种草坪部分的长为(50−2x)m,宽为(38−2x)m,再根据题目中的等量关系建立方程即可得解.
【详解】解:设道路的宽应为x米,由题意得
(50-2x)×(38-2x)=1260
解得:x1=4,x2=40(不符合题意,舍去)
答:道路的宽应为4米.
【点睛】此题考查了一元二次方程的实际应用,解题的关键是能根据题目中的等量关系建立方程.
48.(2022·黑龙江齐齐哈尔)解方程:
【答案】,
【分析】直接开方可得或,然后计算求解即可.
【详解】解:∵
∴或
解得,.
【点睛】本题考查了解一元二次方程.解题的关键在于灵活选取适当的方法解方程.
49.(2022·贵州贵阳)(1)a,b两个实数在数轴上的对应点如图所示.
用“<”或“>”填空:a_______b,ab_______0;
(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.
①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.
【答案】(1)<,<;(2)①x1=-1+,x2=-1-;②x1=0,x2=3;③x1=2+,x2=2-;④x1=-2,x2=2.
【分析】(1)由题意可知:a<0,b>0,据此求解即可;
(2)找出适当的方法解一元二次方程即可.
【详解】解:(1)由题意可知:a<0,b>0,
∴a<b,ab<0;
故答案为:<,<;
(2)①x2+2x−1=0;
移项得x2+2x=1,
配方得x2+2x+1=1+1,即(x+1)2=2,
则x+1=±,
∴x1=-1+,x2=-1-;
②x2−3x=0;
因式分解得x(x-3)=0,
则x=0或x-3=0,
解得x1=0,x2=3;
③x2−4x=4;
配方得x2-4x+4=4+4,即(x-2)2=8,
则x-2=±,
∴x1=2+,x2=2-;
④x2−4=0.
因式分解得(x+2) (x-2)=0,
则x+2=0或x-2=0,
解得x1=-2,x2=2.
【点睛】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.还考查了实数与数轴.
50.(2022·内蒙古呼和浩特)计算求解:
(1)计算 (2)解方程组
【答案】(1)5(2)
【分析】(1)先去绝对值,算负整数指数幂,将特殊角三角函数值代入,再计算即可;
(2)直接解二元一次方程组即可.
(1)
原式=2+3
5;
(2)
整理方程组得:,
由①得:y=5-4x③,
将③代入②得:-5x=5,
解得:x=-1,
将x=-1代入③得:y=9,
则方程组得解为:.
【点睛】本题考查实数运算和解二元一次方程组,解答本题的关键是掌握各知识点的运算法则.
51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:
(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )
②刘三姐的姐妹们给出的答案是唯一正确的答案.( )
③该歌词表达的数学题的正确答案有无数多种.( )
(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
【答案】(1)√,×,×
(2)数量少的群里狗的数量为45只,狗的数量多且数量相同的群里狗的数量为85只
【分析】(1)根据题意,姐妹们给出的答案是符合要求的;除此之外,还可分成97,97,97,9等,这里的每群狗的数量还需要是正整数,所以答案不是无数种,即可判断;
(2)设数量少的狗群的数量为只,则狗的数量多且数量相同的群里狗的数量为只,根据狗的总数为300只,可列一元一次方程,求解即可.
(1)
根据题意,姐妹们给出的答案是符合要求的;除此之外,还可分成97,97,97,9等,
刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案,
∵这里的每群狗的数量还需要是正整数,
∴答案不是无数种,
∴①√,②×,③×,
故答案为:√,×,×;
(2)
设数量少的狗群的数量为只,则狗的数量多且数量相同的群里狗的数量为只,由题意得:
,
解得,
(只),
所以,数量少的群里狗的数量为45只,狗的数量多且数量相同的群里狗的数量为85只.
【点睛】本题考查了一元一次方程的实际应用,整式加减的运用,准确理解题意并熟练掌握知识点是解题的关键.
52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.
(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)
(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.
【答案】(1)A,B两种商品每件进价分别为每件100元,每件60元.
(2)利润w(元)与m(件)的函数关系式为:
【分析】(1)设A,B两种商品每件进价分别为每件x元,每件y元,则根据购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元,列方程组,再解方程组即可;
(2)由总利润等于销售A,B两种商品的利润之和列函数关系式即可.
(1)
解:设A,B两种商品每件进价分别为每件x元,每件y元,则
解得:,
答:A,B两种商品每件进价分别为每件100元,每件60元.
(2)
解:由题意可得:
即总利润w(元)与m(件)的函数关系式为:
【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,确定相等关系列方程或函数关系是解本题的关键.
53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.
【答案】每千克有机黑胡椒售价为50元,每千克有机白胡椒售价为60元
【分析】设每千克有机黑胡椒售价为x元,每千克有机白胡椒售价为y元,根据题意列出关于x,y的二元一次方程组,解之即可得出结论;
【详解】解:设每千克有机黑胡椒售价为x元,每千克有机白胡椒售价为y元.
根据题意,得
解得
答:每千克有机黑胡椒售价为50元,每千克有机白胡椒售价为60元.
【点睛】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.
相关试卷
这是一份2022年中考数学分类汇编22讲专题02 整式与因式分解,文件包含专题02整式与因式分解-老师版docx、专题02整式与因式分解-学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份2022年中考数学分类汇编22讲专题22 与二次函数相关的压轴题,文件包含专题22与二次函数相关的压轴题-老师版docx、专题22与二次函数相关的压轴题-学生版docx等2份试卷配套教学资源,其中试卷共132页, 欢迎下载使用。
这是一份2022年中考数学分类汇编22讲专题20 与圆相关的压轴题,文件包含专题20与圆相关的压轴题-老师版docx、专题20与圆相关的压轴题-学生版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。