所属成套资源:八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
专题17 数据的分析解答题压轴训练-八年级数学下学期期末考试压轴题专练(人教版,尖子生专用)
展开这是一份专题17 数据的分析解答题压轴训练-八年级数学下学期期末考试压轴题专练(人教版,尖子生专用),文件包含专题17数据的分析解答题压轴训练解析版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx、专题17数据的分析解答题压轴训练原卷版-八年级数学下学期期末考试压轴题专练人教版尖子生专用docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
专题17 数据的分析解答题压轴训练
(时间:60分钟 总分:120) 班级 姓名 得分
解答题解题策略:(1)常见失分因素:①对题意缺乏正确的理解,应做到慢审题快做题;②公式记忆不牢,考前一定要熟悉公式、定理、性质等;③思维不严谨,不要忽视易错点;④解题步骤不规范,一定要按课本要求,否则会因不规范答题而失分,避免“对而不全”,如解概率题时,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;⑤计算能力差导致失分多,会做的试题一定不能放过,不能一味求快,⑥轻易放弃试题,难题不会做时,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,中考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作为“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
一、解答题
1.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整):
甲班乙班1分钟投篮测试成绩统计表
| 甲班 | 乙班 |
平均数 | 6.5 | a |
中位数 | b | 6 |
方差 | 3.45 | 4.65 |
优秀率 | 30% | c |
根据以上信息,解答下列问题:
(1)直接写出a,b,c的值.
(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.
2.甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):
| 平均成绩/环 | 中位数/环 | 众数/环 | 方差/环2 |
甲 | 7 | 7 | 12 | |
乙 | 7 | 8 |
根据以上信息,解决下列问题:
(1)求出的值;
(2)直接写出乙队员第7次的射击环数及的值,并求出的值;
(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.
3.某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:
甲:8,8,7,8,9;乙:5,9,7,10,9;
甲乙两同学引体向上的平均数、众数、中位数、方差如下:
| 平均数 | 众数 | 中位数 | 方差 |
甲 | 8 | b | 8 | 0.4 |
乙 | a | 9 | c | 3.2 |
根据以上信息,回答下列问题:
(1)表格是a= ,b= ,c= .(填数值)
(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 .班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是 ;
(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 .(填“变大”、“变小”或“不变”)
4.某公司有名职员,公司食堂供应午餐.受新冠肺炎疫情影响,公司停工了一段时间.为了做好复工后职员取餐、用餐的防疫工作,食堂进行了准备,主要如下:①将过去的自主选餐改为提供统一的套餐;②调查了全体职员复工后的午餐意向,结果如图所示;③设置不交叉的取餐区和用餐区,并将用餐区按一定的间距要求调整为可同时容纳人用餐;④规定:排队取餐,要在食堂用餐的职员取餐后即进入用餐区用餐;⑤随机邀请了名要在食堂取餐的职员进行了取餐、用餐的模拟演练,这名职员取餐共用时,用餐时间(含用餐与回收餐具)如表所示.为节约时间,食堂决定将第一排用餐职员人的套餐先摆放在相应餐桌上,并在开始用餐,其他职员则需自行取餐.
用餐时间 | 人数 |
(1)食堂每天需要准备多少份午餐?
(2)食堂打算以参加演练的名职员用餐时间的平均数为依据进行规划:前一批职员用餐后,后一批在食堂用餐的职员开始取餐.为避免拥堵,需保证每位取餐后进入用餐区的职员都有座位用餐,则该规划是否可行?如果可行,请说明理由,并依此规划,根据调查统计的数据设计一个时间安排表,使得食堂不超过就可结束取餐、用餐服务,开始消杀工作;如果不可行,也请说明理由.
5.今年是五四运动100周年,也是中华人民共和国成立70周年,为缅怀五四先驱崇高的爱国情怀和革命精神,巴蜀中学开展了“青春心向党,建功新时代”为主题的系列纪念活动.历史教研组也组织了近代史知识竞赛,七、八年级各有300名学生参加竞赛.为了解这两个年级参加竞赛学生的成绩情况,从中各随机抽取20名学生的成绩,并对数据进行了整理和分析(成绩得分用表示,数据分为6组;;;;;)
绘制了如下统计图表:
年级 | 平均数 | 中位数 | 众数 | 极差 |
七年级 | 85.8 | 26 | ||
八年级 | 86.2 | 86.5 | 87 | 18 |
七年级测试成绩在、两组的是:81 83 83 83 83 86 87 88 88 89 89
根据以上信息,解答下列问题
(1)上表中_______,_______.
(2)记成绩90分及90分以上为优秀,则估计七年级参加此次知识竞赛成绩为优秀的学生有多少名?
(3)此次竞赛中,七、八两个年级学生近代史知识掌握更好的是________(填“七”或“八“)年级,并说明理由?
6.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
| 平均成绩/环 | 中位数/环 | 众数/环 | 方差 |
甲 | ||||
乙 |
(1)写出表格中的值:
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?
7.某商店3,4月份销售同一品牌各种规格空调的情况如表所示:
| 1匹 | 1.2匹 | 1.5匹 | 2匹 |
3月 | 12 | 20 | 8 | 4 |
4月 | 16 | 30 | 14 | 8 |
根据表中数据,解答下列问题:
(1)该商店3,4月份平均每月销售空调______台.
(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?
(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?
8.“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见表:
序号 | 1 | 2 | 3 | 4 | 5 | 6 |
笔试成绩 | 66 | 90 | 86 | 64 | 65 | 84 |
专业技能测试成绩 | 95 | 92 | 93 | 80 | 88 | 92 |
说课成绩 | 85 | 78 | 86 | 88 | 94 | 85 |
(1)求出说课成绩的中位数、众数;
(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?
9.良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下:
收集数据:从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下:
七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82
八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50
整理数据:
年级 | x<60 | 60≤x<80 | 80≤x<90 | 90≤x≤100 |
七年级 | 0 | 10 | 4 | 1 |
八年级 | 1 | 5 | 8 | 1 |
(说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格)
分析数据:
年级 | 平均数 | 中位数 | 众数 |
七年级 |
| 75 | 75 |
八年级 | 77.5 | 80 |
|
得出结论:
(1)根据上述数据,将表格补充完整;
(2)可以推断出 年级学生的体质健康状况更好一些,并说明理由;
(3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数.
10.某校拟派一名跳高运动员参加校际比赛,对甲、乙两名同学进行了8次跳高选拔比赛,他们的原始成绩(单位:cm)如下表:
学生/成绩/次数 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | 第7次 | 第8次 |
甲 | 169 | 165 | 168 | 169 | 172 | 173 | 169 | 167 |
乙 | 161 | 174 | 172 | 162 | 163 | 172 | 172 | 176 |
两名同学的8次跳高成绩数据分析如下表:
学生/成绩/名称 | 平均数(单位:cm) | 中位数(单位:cm) | 众数(单位:cm) | 方差(单位:cm2) |
甲 | a | b | c | 5.75 |
乙 | 169 | 172 | 172 | 31.25 |
根据图表信息回答下列问题:
(1)a= ,b= ,c= ;
(2)这两名同学中, 的成绩更为稳定;(填甲或乙)
(3)若预测跳高165就可能获得冠军,该校为了获取跳高比赛冠军,你认为应该选择 同学参赛,理由是: ;
(4)若预测跳高170方可夺得冠军,该校为了获取跳高比赛冠军,你认为应该选择 同学参赛,班由是: .
11.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.
计算工作人员的平均工资;
计算出的平均工作能否反映帮工人员这个月收入的一般水平?
去掉王某的工资后,再计算平均工资;
后一个平均工资能代表一般帮工人员的收入吗?
根据以上计算,从统计的观点看,你对的结果有什么看法?
12.某班40名学生的某次数学成绩如下表:
成绩(分) | 50 | 60 | 70 | 80 | 90 | 100 |
人数(人) | 2 | m | 10 | n | 4 | 2 |
(1)若这班的数学成绩为69分,求m和n的值.
(2)在(1)的条件下,若该班40名学生成绩的众数为X,中位数为Y.则(X-Y)2的值.
13.以下是某省2010年教育发展情况有关数据:
全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.
请将上述资料中的数据按下列步骤进行统计分析.
(1)整理数据:请设计一个统计表,将以上数据填入表格中.
(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.
(3)分析数据:
①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)
②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)
③从扇形统计图中,你得出什么结论?(写出一个即可)