![2022-2023学年上学期七年级数学期末复习冲刺卷(06)第1页](http://img-preview.51jiaoxi.com/2/3/13791826/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年上学期七年级数学期末复习冲刺卷(06)第2页](http://img-preview.51jiaoxi.com/2/3/13791826/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022-2023学年上学期七年级数学期末复习冲刺卷(06)第3页](http://img-preview.51jiaoxi.com/2/3/13791826/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022-2023学年上学期七年级数学期末复习冲刺卷(06)
展开
这是一份2022-2023学年上学期七年级数学期末复习冲刺卷(06),共16页。试卷主要包含了下列各对数,互为相反数的一对是,下列式子中,正确的是等内容,欢迎下载使用。
2022-2023学年上学期七年级数学期末复习冲刺卷(06)
(考试时间:120分钟 试卷满分:120分)
一、 选择题(本题共10小题,每小题3分,共30分)。
1.下列各对数,互为相反数的一对是( )
A.3与﹣ B.2与﹣3 C.﹣3与3 D.3与
2.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是( )
A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b
3.已知﹣x3y2与3y2xn是同类项,则n的值为( )
A.2 B.3 C.5 D.2或3
4.下列式子中,正确的是( )
A.﹣1+2=﹣1 B.﹣2×(﹣3)=﹣6 C.(﹣1)2=2 D.3÷(﹣)=﹣9
5.下列图形通过折叠能围成一个三棱柱的是( )
A. B.
C. D.
6.如图是一个小正方体的表面展开图,把展开图折叠成小正方体后,有“开”字一面的相对面上的字是( )
A.我 B.爱 C.教 D.育
7.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是( )
A.18° B.55° C.63° D.117°
8.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为( )
A.xy B.x+y C.x+10y D.10x+y
9.将一件商品按进价提高30%后标价,又以九折优惠卖出,结果每件仍获利34元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为( )
A.30%(1+90%)x=34 B.x﹣90%(1+30%)x=34
C.90%(1+30%)x﹣x=34 D.90%(1﹣30%)x﹣x=34
10.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为( )
A.120° B.108° C.112° D.114°
二、 填空题(本题共7题,每小题4分,共28分)。
11.﹣6的倒数等于 .
12.若∠α=72°,则∠α的补角为 °.
13.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°,∠2= .
14.如图,把长方形纸的一角折叠,得到折痕EF,已知∠EFG=36°,则∠DFC= °.
15.阅读材料:设x=0.=0333…①,则10x=3.333…②,由②﹣①得9x=3,即x=.所以0.=0.333…=,根据上述方法把0.化成分数,则0.= .
16.若x=﹣3,则﹣x2+2x﹣10的值为 .
17.如图,将一张长为1、宽为a的长方形纸片(<a<1)折一下,剪下一个边长等于宽度a的正方形(称为第一次操作);再将剩下的长方形如图折一下,再次剪下一个边长等于该长方形宽度的正方形(称为第二次操作)…如此反复操作下去,直到第n次操作后,剩下的小长方形为正方形时停止操作.当n=3时,a的值为 .
三、 解答题(本题共8题,18-21题6分,22题7分,23题9分,24题10分,25题12分)。
18.计算:
(1)﹣1.5+1.4﹣(﹣3.6)﹣4.3+(﹣5.2);
(2)﹣14+16÷(﹣2)3×|﹣3﹣1|.
19.解方程:
(1)2(2﹣x)﹣5(2﹣x)=9;
(2).
20.先化简,再求值:5(3x2y﹣xy2+1)﹣4(﹣xy2+3x2y+1),其中x=3,y=﹣.
.
21.如图,A、B、C是平面内三点.
(1)按要求作图:
①作射线BC,过点B作直线l,使A、C两点在直线l两旁;
②点P为直线l上任意一点,点Q为直线BC上任意一点,连接线段AP、PQ.
(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A、B之间的距离为8,点A、C之间的距离为6,则AP+PQ的最小值为 ,依据是 .
22.如图所示,已知直线AB、CD相交于点O,OE、OF为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=51°,求∠EOD的度数.
23.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?
24.某商场从厂家购进了A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.
(1)求购进A、B两种品牌足球各多少个?
(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,出现滞销,商场决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2200元,有多少个B品牌足球打九折出售?
25.如图,点O是直线AB上的一点,从点O引出一条射线OC,使∠AOC=60°,射线OA、OB同时绕点O旋转.
(1)若两条射线OA、OB旋转方向相反,在两射线均旋转一周之内,射线OA、OB同时与射线OC重合,则射线OA与OB旋转的速度之比为 ;
(2)若两条射线OA、OB同时绕点O顺时针旋转,射线OA每秒旋转1°,射线OB每秒旋转5°,设旋转时间为t秒,0<t<180,当∠AOC=∠BOC时,求t的值.
答案与解析
二、 选择题(本题共10小题,每小题3分,共30分)。
1.下列各对数,互为相反数的一对是( )
A.3与﹣ B.2与﹣3 C.﹣3与3 D.3与
【答案】C
【解答】解:A、3与﹣,两数和不是零,不是互为相反数关系,故此选项不符合题意;
B、2与﹣3,两数和不是零,不是互为相反数,故此选项不符合题意;
C、﹣3与3,两数和是零,是互为相反数关系,故此选项符合题意;
D、3和,两数和不是零,不是互为相反数关系,故此选项不符合题意;
故选:C.
2.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是( )
A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b
【答案】D
【解答】解:由数轴可得:a<0<b,|a|>|b|
∴|a+b|=﹣a﹣b
故选:D.
3.已知﹣x3y2与3y2xn是同类项,则n的值为( )
A.2 B.3 C.5 D.2或3
【答案】B
【解答】解:∵﹣x3y2与3y2xn是同类项,
∴n=3,
故选:B.
4.下列式子中,正确的是( )
A.﹣1+2=﹣1 B.﹣2×(﹣3)=﹣6 C.(﹣1)2=2 D.3÷(﹣)=﹣9
【答案】D
【解答】解:A、﹣1+2=1,故A错误;
B、﹣2×(﹣3)=6,故B错误;
C、(﹣1)2=1,故C错误;
D、3÷(﹣)=﹣9,故D正确;
故选:D.
5.下列图形通过折叠能围成一个三棱柱的是( )
A. B.
C. D.
【答案】C
【解答】解:A、折叠后得到三棱锥,故本选项错误;
B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;
C、折叠后能围成三棱柱,故本选项正确;
D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.
故选:C.
6.如图是一个小正方体的表面展开图,把展开图折叠成小正方体后,有“开”字一面的相对面上的字是( )
A.我 B.爱 C.教 D.育
【答案】B
【解答】解:有“开”字一面的相对面上的字是:爱,
故选:B.
7.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是( )
A.18° B.55° C.63° D.117°
【答案】B
【解答】解:A、18°=90°﹣72°,则18°角能画出;
B、55°不能写成36°、72°、45°、90°的和或差的形式,不能画出;
C、63°=90°﹣72°+45°,则63°可以画出;
D、117°=72°+45°,则117°角能画出.
故选:B.
8.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为( )
A.xy B.x+y C.x+10y D.10x+y
【答案】C
【解答】解:个位数字是x,十位数字是y,这个两位数可表示为10y+x.
故选:C
9.将一件商品按进价提高30%后标价,又以九折优惠卖出,结果每件仍获利34元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为( )
A.30%(1+90%)x=34 B.x﹣90%(1+30%)x=34
C.90%(1+30%)x﹣x=34 D.90%(1﹣30%)x﹣x=34
【答案】C
【解答】解:由题意可得,
x(1+30%)×0.9﹣x=34,即90%(1+30%)x﹣x=34,
故选:C.
10.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为( )
A.120° B.108° C.112° D.114°
【答案】C
【解答】解:∵2∠BFE+∠BFC=180°,∠BFE﹣∠BFC=∠CFE=24°,
∴∠BFE=(180°+24°)=68°.
∵AE∥BF,
∴∠AEF=180°﹣∠BFE=112°.
故选:C.
四、 填空题(本题共7题,每小题4分,共28分)。
11.﹣6的倒数等于 .
【答案】﹣
【解答】解:﹣6的倒数等于﹣.
故答案为:﹣
12.若∠α=72°,则∠α的补角为 °.
【答案】108
【解答】解:∵∠α=72°,
∴∠α的补角是180°﹣72°=108°,
故答案为:108.
13.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°,∠2= .
【答案】57°
【解答】解:由题意可知:∠1+∠EAC=60°,∠EAC+∠2=90°,
∵∠1=27°,
∴∠EAC=60°﹣∠1=33°,
∴∠2=90°﹣∠EAC=57°.
故答案为:57°.
14.如图,把长方形纸的一角折叠,得到折痕EF,已知∠EFG=36°,则∠DFC= °.
【答案】108°
【解答】解:由折叠的性质可得∠DFE=∠EFG=36°,
∴∠DFC=180°﹣∠DFE﹣∠EFG=180°﹣36°﹣36°=108°.
15.阅读材料:设x=0.=0333…①,则10x=3.333…②,由②﹣①得9x=3,即x=.所以0.=0.333…=,根据上述方法把0.化成分数,则0.= .
【答案】
【解答】解:设x=0.=0.1313…①,
则100x=13.13…②,
由②﹣①得99x=13,即x=,
故答案为:
16.若x=﹣3,则﹣x2+2x﹣10的值为 .
【答案】﹣25
【解答】解:当x=﹣3时,
﹣x2+2x﹣10=﹣(﹣3)2+2×(﹣3)﹣10
=﹣9﹣6﹣10
=﹣25,
故答案为-25
17.如图,将一张长为1、宽为a的长方形纸片(<a<1)折一下,剪下一个边长等于宽度a的正方形(称为第一次操作);再将剩下的长方形如图折一下,再次剪下一个边长等于该长方形宽度的正方形(称为第二次操作)…如此反复操作下去,直到第n次操作后,剩下的小长方形为正方形时停止操作.当n=3时,a的值为 .
【答案】或.
【解答】解:如果1﹣a>2a﹣1,即a<,第二次操作剩余的矩形的长是:1﹣a,宽是a﹣(1﹣a)=2a﹣1;
第三次操作剩余的矩形的长是a﹣(1﹣a)=2a﹣1,宽是:(1﹣a)﹣(2a﹣1)=2﹣3a.
根据题意得:2a﹣1=2﹣3a.
解得:a=.
如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.
则1﹣a=(2a﹣1)﹣(1﹣a),
解得a=.
故答案为或.
五、 解答题(本题共8题,18-21题6分,22题7分,23题9分,24题10分,25题12分)。
18.计算:
(1)﹣1.5+1.4﹣(﹣3.6)﹣4.3+(﹣5.2);
(2)﹣14+16÷(﹣2)3×|﹣3﹣1|.
【解答】解:(1)﹣1.5+1.4﹣(﹣3.6)﹣4.3+(﹣5.2)
=﹣1.5+1.4+3.6+(﹣4.3)+(﹣5.2)
=﹣6;
(2)﹣14+16÷(﹣2)3×|﹣3﹣1|
=﹣1+16÷(﹣8)×4
=﹣1+(﹣2)×4
=﹣1+(﹣8)
=﹣9.
19.解方程:
(1)2(2﹣x)﹣5(2﹣x)=9;
(2).
【解答】解:(1)去括号得:4﹣2x﹣10+5x=9,
移项合并得:3x=15,
解得:x=5;
(2)去分母得:2x﹣3x+1=6,
移项合并得:x=﹣5.
20.先化简,再求值:5(3x2y﹣xy2+1)﹣4(﹣xy2+3x2y+1),其中x=3,y=﹣.
【解答】解:5 ( 3x2y﹣xy2+1 )﹣4(﹣xy2+3x2y+1)
=15x2y﹣5xy2+5+4xy2﹣12x2y﹣4
=3x2y﹣xy2+1.
当x=3,y=﹣时,
原式=3×32×(﹣)﹣3×(﹣)2+1=﹣9﹣+1=﹣.
21.如图,A、B、C是平面内三点.
(1)按要求作图:
①作射线BC,过点B作直线l,使A、C两点在直线l两旁;
②点P为直线l上任意一点,点Q为直线BC上任意一点,连接线段AP、PQ.
(2)在(1)所作图形中,若点A到直线l的距离为2,点A到直线BC的距离为5,点A、B之间的距离为8,点A、C之间的距离为6,则AP+PQ的最小值为 ,依据是 .
【解答】解:如图所示,
(1)①射线BC,直线l即为所求;
②点P、Q、线段AP、PQ即为所求;
(2)根据作图可知:
AP+PQ的最小值即为点A到直线BC的距离为5.
依据为垂线段最短.
故答案为:5,垂线段最短.
22.如图所示,已知直线AB、CD相交于点O,OE、OF为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=51°,求∠EOD的度数.
【解答】解:∵∠AOC=∠BOD,
∵OF平分∠AOC,
∴∠AOF=∠AOC=∠BOD,
∵∠AOF+∠BOD=51°,
∴∠AOF=17°,
∠BOD=34°,
∵∠AOE=90°,
∴∠BOE=180°﹣∠AOE=90°,
∴∠DOE=90°+34°=124°.
23.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?
【答案】2
【解答】解:设应先安排x人工作,
根据题意得:+=1
化简可得:+=1,
即:x+2(x+2)=10
解可得:x=2
答:应先安排2人工作.
24.某商场从厂家购进了A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.
(1)求购进A、B两种品牌足球各多少个?
(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,出现滞销,商场决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2200元,有多少个B品牌足球打九折出售?
【答案】(1)进A品牌足球40个,则购进B品牌足球60个 (2)20个B
【解答】解:(1)设购进A品牌足球x个,则购进B品牌足球(100﹣x)个,
根据题意,得80×(100﹣x)﹣50x=2800,
解得x=40.
100﹣x=60.
答:购进A品牌足球40个,则购进B品牌足球60个;
(2)设有y个B品牌足球打九折出售,
根据题意,得(80﹣50)×40+80×25%×(60﹣y)+[80×(1+25%)×90%﹣80]y=2200.
解得y=20.
答:有20个B品牌足球打九折出售.
25.如图,点O是直线AB上的一点,从点O引出一条射线OC,使∠AOC=60°,射线OA、OB同时绕点O旋转.
(1)若两条射线OA、OB旋转方向相反,在两射线均旋转一周之内,射线OA、OB同时与射线OC重合,则射线OA与OB旋转的速度之比为 ;
(2)若两条射线OA、OB同时绕点O顺时针旋转,射线OA每秒旋转1°,射线OB每秒旋转5°,设旋转时间为t秒,0<t<180,当∠AOC=∠BOC时,求t的值.
【解答】解:(1)设旋转时间为x秒,①射线OA顺时针旋转、OB逆时针旋转时,
由题意得:,
∴,
∴射线OA与OB旋转的速度之比为1:2;
②射线OA逆时针旋转、OB顺时针旋转时,
由题意得:,
∴,
∴射线OA与OB旋转的速度之比为5:4;
综上,射线OA与OB旋转的速度之比为1:2或5:4,
故答案为:1:2或5:4;
(2)①当0<t≤即0<t≤48时,
由题意得:60﹣t=240﹣5t,
解得:t=45;
②当48<t≤60时,
由题意得:5t﹣240=60﹣t,
解得:t=50;
③当60<t≤即60<t≤72时,
由题意得:t﹣60=5t﹣240,
解得:t=45(不合题意,舍去);
④当72<t<180时,
由题意得:t﹣60=240﹣(5t﹣360)或t﹣60=(5t﹣360)﹣240或t﹣60=240﹣(5t﹣720),
解得:t=110或135或170;
综上,t的值为45或50或110或135或170.
相关试卷
这是一份2022-2023学年上学期七年级数学期末复习冲刺卷(14),共30页。试卷主要包含了55500或13750字.等内容,欢迎下载使用。
这是一份2022-2023学年上学期七年级数学期末复习冲刺卷(13),共28页。
这是一份2022-2023学年上学期七年级数学期末复习冲刺卷(12),共19页。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)