山东省济宁市嘉祥县第四中学2022-2023学年九年级上学期期中考试数学试卷(含答案)
展开
这是一份山东省济宁市嘉祥县第四中学2022-2023学年九年级上学期期中考试数学试卷(含答案),共27页。试卷主要包含了抛物线y=﹣5x2可由y=﹣5,已知关于x的一元二次方程,点A,下列关于二次函数y=3等内容,欢迎下载使用。
2022-2023学年度第一学期期中学业水平测试
一.选择题(共11小题)
1.方程ax2+ax+a=0为一元二次方程,则a的值一定满足( )
A.a≠0 B.a≠1 C.a=1 D.任意实数
2.下列手机手势解锁图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
3.已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是( )
A.x<1 B.x>1 C.x>2 D.x<2
4.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将累计会有225人感染(225人可以理解为三轮感染的总人数),若设1人平均感染x人,依题意可列方程( )
A.1+x=225 B.1+x2=225
C.(1+x)2=225 D.1+(1+x2)=225
5.抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到( )
A.先向右平移2个单位,再向下平移6个单位
B.先向左平移2个单位,再向上平移6个单位
C.先向左平移2个单位,再向下平移6个单位
D.先向右平移2个单位,再向上平移6个单位
6.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )
A.m≥ B.m≥且m≠1 C.m< D.m>且m≠1
7.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )
A.关于x轴对称 B.关于y轴对称
C.绕原点逆时针旋转90° D.绕原点顺时针旋转90
8.AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为( )
A.20° B.25° C.30° D.40°
9.下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是( )
A.点(0,2)在函数图象上 B.开口方向向上
C.对称轴是直线x=1 D.与直线y=3x有两个交点
10.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是( )
A.1个 B.2个 C.3个 D.4个
二. 填空题(共5小题)
11.在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是 .
12.已知m,n是方程x2+x﹣3=0的两个实数根,则m2﹣n+2022的值是 .
13.如图,PA,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△PAB的周长为 .
14.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),则关于x的方程ax2+bx+c=0的解为 .
15.如图,“心”形是由抛物线y=﹣x2+6和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则AB= .
三.解答题(共7小题)
16.(1)解方程:;x2﹣6x﹣4=0.
(2)解方程:x(x﹣2)=x﹣2
17.如图,在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点均在网格的格点上.
(1)作出△ABC向右平移5个单位长度后对应的图形△A1B1C1;
(2)作出△ABC关于点O的中心对称图形△A2B2C2;
(3)观察发现,△A1B1C1与△A2B2C2成 对称(填“中心”或“轴”),在图中画出它们的对称轴或者对称中心.
18.18.如图是2022年3月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11﹣3×17=48,13×15﹣7×21=48.不难发现,结果都是48.
2022年3月
(1)请证明发现的规律;
(2)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120,请判断他的说法是否正确.
19.如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求AE的长.
20.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
21.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.
(1)求出表中a,b的值,其中a= ,b= .
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
5
…
y=
…
﹣
﹣
a
﹣
﹣3
0
3
b
…
(2)根据表中的数据,在图中补全该函数图象;
3)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打”√” ,错误的在答题卡上相应的括号内打”×’’;
①该函数图象是轴对称图形,它的对称轴为y轴;
②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3;
③当x<﹣1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小.
(4)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集.(保留1位小数,误差不超过0.2)
22.已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.
(1)求抛物线的解析式和A,B两点的坐标;
(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;
(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.
2022-2023学年度第一学期期中学业水平测试
参考答案与试题解析
一.选择题(共10小题,每题3分)
1.方程ax2+ax+a=0为一元二次方程,则a的值一定满足( )
A.a≠0 B.a≠1 C.a=1 D.任意实数
【分析】任何一个关于x的一元二次方程经过整理,都能化成ax2+bx+c=0(a≠0),这种形式叫一元二次方程的一般形式.利用一元二次方程的一般形式进行判断,即可求出a的取值范围.
【解答】解:∵关于x的方程ax2+ax+a=0是一元二次方程,
∴a满足的条件是a≠0.
故选:A.
【点评】此题考查了一元二次方程的概念,熟练掌握一元二次方程的一般形式是解本题的关键.
2.下列手机手势解锁图案中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A.是轴对称图形,又不是中心对称图形,故本选项不合题意;
B.是中心对称图形,不是轴对称图形,故本选项符合题意;
C.不是轴对称图形,也不是中心对称图形,故本选项不合题意;
D.是轴对称图形,不是中心对称图形,故本选项不合题意.
故选:B.
【点评】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.
3.已知二次函数y=2x2﹣4x+5,当函数值y随x值的增大而增大时,x的取值范围是( )
A.x<1 B.x>1 C.x>2 D.x<2
【分析】将二次函数解析式化为顶点式,由抛物线对称轴及开口方向求解.
【解答】解:∵y=2x2﹣4x+5=2(x﹣1)2+3,
∴抛物线开口向上,对称轴为直线x=1,
∴x>1时,y随x增大而增大,
故选:B.
【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.
4.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将累计会有225人感染(225人可以理解为三轮感染的总人数),若设1人平均感染x人,依题意可列方程( )
A.1+x=225 B.1+x2=225
C.(1+x)2=225 D.1+(1+x2)=225
【分析】此题可设1人平均感染x人,则第一轮共感染(x+1)人,第二轮共感染x(x+1)+x+1=(x+1)(x+1)人,根据题意列方程即可.
【解答】解:设1人平均感染x人,
依题意可列方程:1+x+(1+x)x=225,
即(1+x)2=225
故选:C.
【点评】此题考查了由实际问题抽象出一元二次方程的解,找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.
5.抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到( )
A.先向右平移2个单位,再向下平移6个单位
B.先向左平移2个单位,再向上平移6个单位
C.先向左平移2个单位,再向下平移6个单位
D.先向右平移2个单位,再向上平移6个单位
【分析】按照“左加右减,上加下减”的规律求则可.
【解答】解:将抛物线y=﹣5(x+2)2﹣6先向右平移2个单位,再向上平移6个单位即可得到抛物线y=﹣5x2.
故选:D.
【点评】本题主要考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.
6.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )
A.m≥ B.m≥且m≠1 C.m< D.m>且m≠1
【分析】利用一元二次方程有实数根的条件得到关于m的不等式组,解不等式组即可得出结论.
【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,
∴,
解得:m≥且m≠1.
故选:D.
【点评】本题主要考查了一元二次方程的根的判别式,利用已知条件得到关于m的不等式组是解题的关键.
7.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是( )
A.关于x轴对称 B.关于y轴对称
C.绕原点逆时针旋转90° D.绕原点顺时针旋转90
【分析】利用图象法解决问题即可.
【解答】解:如图,观察图形可知,点A绕点O逆时针旋转90°得到点B.
故选:C.
【点评】本题考查坐标与图形变化﹣旋转,解题的关键是正确画出图形,利用图象法解决问题.
8.AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为( )
A.20° B.25° C.30° D.40°
【分析】连接OC,根据切线的性质得到∠OCP=90°,证明∠OCA=∠OAC=∠COP,再根据圆周角定理得出答案.
【解答】证明:连接OC,
∵PC为⊙O的切线,
∴∠OCP=90°,即∠COP+∠P=90°,
∵∠P=40°,
∴∠COP=50°,
∵OA=OC,
∴∠OCA=∠OAC=∠COP=25°,
∴∠D=∠CAO=25°,
故选:B.
【点评】本题考查了切线的性质、圆周角定理,掌握切线的性质定理是解题的关键.
9.下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是( )
A.点(0,2)在函数图象上 B.开口方向向上
C.对称轴是直线x=1 D.与直线y=3x有两个交点
【分析】A、把x=0代入y=3(x+1)(2﹣x),求函数值再与点的纵坐标进行比较;
B、化简二次函数:y=﹣3x2+3x+6,根据a的取值判断开口方向;
C、根据对称轴公式计算;
D、把函数的问题转化为一元二次方程的问题,根据判别式的取值来判断.
【解答】解:A、把x=0代入y=3(x+1)(2﹣x),
得y=6≠2,
∴A错误;
B、化简二次函数:y=﹣3x2+3x+6,
∵a=﹣3<0,
∴二次函数的图象开口方向向下,
∴B错误;
C、∵二次函数对称轴是直线x=﹣
=,
∴C错误;
D、∵3(x+1)(2﹣x)=3x,
∴﹣3x2+3x+6=3x,
∴﹣3x2+6=0,
∵b2﹣4ac=72>0,
∴二次函数y=3(x+1)(2﹣x)的图象与直线y=3x有两个交点,
∴D正确;
故选:D.
【点评】此题考查了二次函数图象上点的坐标特征、二次函数的性质、一次函数图象上点的坐标特征、正比例函数的性质,掌握这几个知识点的应用,其中函数的问题转化为一元二次方程的问题是解题关键.
10.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,与BC相交于点G,则下列结论:①∠BAD=∠CAD;②若∠BAC=60°,则∠BEC=120°;③若点G为BC的中点,则∠BGD=90°;④BD=DE.其中一定正确的个数是( )
A.1个 B.2个 C.3个 D.4个
【分析】利用三角形内心的性质得到∠BAD=∠CAD,则可对①进行判断;直接利用三角形内心的性质对②进行判断;根据垂径定理则可对③进行判断;通过证明∠DEB=∠DBE得到DB=DE,则可对④进行判断.
【解答】解:∵E是△ABC的内心,
∴AD平分∠BAC,
∴∠BAD=∠CAD,故①正确;
如图,连接BE,CE,
∵E是△ABC的内心,
∴∠EBC=∠ABC,∠ECB=ACB,
∵∠BAC=60°,
∴∠ABC+∠ACB=120°,
∴∠BEC=180°﹣∠EBC﹣∠ECB=180°﹣(∠ABC+∠ACB)=120°,故②正确;
∵∠BAD=∠CAD,
∴=,
∴OD⊥BC,
∵点G为BC的中点,
∴G一定在OD上,
∴∠BGD=90°,故③正确;
如图,连接BE,
∴BE平分∠ABC,
∴∠ABE=∠CBE,
∵∠DBC=∠DAC=∠BAD,
∴∠DBC+∠EBC=∠EBA+∠EAB,
∴∠DBE=∠DEB,
∴DB=DE,故④正确.
∴一定正确的①②③④,共4个.
故选:D.
【点评】本题考查了三角形的内切圆与内心,圆周角定理,三角形的外接圆与外心,解决本题的关键是掌握三角形的内心与外心.
三. 填空题(共5小题,每题3分)
11. 在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是 (﹣2,3) .
【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).
【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点的对称点P′的坐标是(﹣2,3).
故答案为:(﹣2,3).
【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.
12.已知m,n是方程x2+x﹣3=0的两个实数根,则m2﹣n+2022的值是 2026 .
【分析】先根据一元二次方程的解得的定义得到m2=﹣m+3,则m2﹣n+2022可化为﹣(m+n)+2025,再根据根与系数的关系得到m+n=﹣1,然后利用整体代入的方法计算.
【解答】解:∵m是方程x2+x﹣3=0的实数根,
∴m2+m﹣3=0,
∴m2=﹣m+3,
∴m2﹣n+2022=﹣m+3﹣n+2022=﹣(m+n)+2025,
∵m,n是方程x2+x﹣3=0的两个实数根,
∴m+n=﹣1,
∴m2﹣n+2022=﹣(﹣1)+2025=2026.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,x1+x2=﹣,x1x2=.
13.如图,PA,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△PAB的周长为 6 .
【分析】根据切线的性质得到OA⊥PA,OB⊥PB,OP平分∠APB,PA=PB,推出△PAB是等边三角形,根据直角三角形的性质求出AC,由AB=2AC,于是得到结论.
【解答】解:∵PA、PB是⊙O的两条切线,
∴OA⊥PA,OB⊥PB,OP平分∠APB,PA=PB,
∵∠APB=60°,
∴△PAB是等边三角形,AB=2AC,PO⊥AB,
∴∠PAB=60°,
∴∠OAC=∠PAO﹣∠PAB=90°﹣60°=30°,
∴AO=2OC,
∵OC=1,
∴AO=2,
∴AC=,
∴AB=2AC=2,
∴△PAB的周长=6.
故答案为:6.
【点评】本题考查了切线的性质,直角三角形的性质,三角形的周长的计算,熟练掌握切线的性质是解题的关键.
14.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),则关于x的方程ax2+bx+c=0的解为 x=1或x=3 .
【分析】根据抛物线的轴对称性质得到抛物线与x轴的另一个交点坐标,由此求得关于x的方程ax2+bx+c=0(a≠0)的两根.
【解答】解:∵抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点为(1,0),
∴抛物线与x轴的另一个交点坐标为(3,0),
∴关于x的方程ax2+bx+c=0的解为x=1或x=3,
故答案为:x=1或x=3.
【点评】本题主要考查了抛物线与x轴的交点,二次函数的性质,解题的关键是求得抛物线与x轴的两个交点坐标.
15.如图,“心”形是由抛物线y=﹣x2+6和它绕着原点O,顺时针旋转60°的图形经过取舍而成的,其中顶点C的对应点为D,点A,B是两条抛物线的两个交点,点E,F,G是抛物线与坐标轴的交点,则AB= 6 .
【分析】如图1,连接OD,过点B作BH⊥OC于点H,设BH=a,则OB=2a,可得B(a,a),再求出直线AB解析式,联立直线和抛物线y=﹣x2+6,求出点A的坐标,可求得AB.
【解答】解:如图1,连接OD,过点B作BH⊥OC于点H,
∵抛物线y=﹣x2+6和它绕着原点O,顺时针旋转60°的图形交于A、B两点,
∴∠COD=60°,C、D关于直线OB对称,
∴∠COB=∠BOD=30°,
∵∠OHB=90°,
∴OB=2BH,设BH=a,则OB=2a,
∴OH===a,
∴B(a,a),
∵抛物线y=﹣x2+6经过点B,
∴a=﹣a2+6,
解得:a=或﹣2 ,
∴B( ,3),B(﹣2 ,﹣6)(舍去)
∴直线AB的解析式为:y=x,
联立,
解得:xA=﹣2,xB=,
∴A点坐标是:(﹣2,﹣6)
∴AB==6 .
故答案为:6.
【点评】本题考查了二次函数的图象和性质,旋转的性质,两点之间距离公式,直角三角形性质,解题关键是理解题意,运用数形结合思想和方程思想.
三.解答题(共7小题)
16.(1)解方程:;x2﹣6x﹣4=0.
(2)解方程:x(x﹣2)=x﹣2
【分析】(1)利用因式分解法求解即可;
(2)利用因式分解法求解即可.
【解答】解:(1)x2﹣6x﹣4=0,
x2﹣6x=4,
∴x2﹣6x+9=4+9,
∴(x﹣3)2=13,
∴x﹣3=±13,
∴x1=3+13,x2=3﹣13.
(2)x(x﹣2)﹣(x﹣2)=0,
(x﹣2)(x﹣1)=0,
∴x﹣2=0或x﹣1=0,
∴x1=2,x2=1;
【点评】本题考查了解一元二次方程﹣因式分解法和配方法:因式分解法和配方法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
17.如图,在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点均在网格的格点上.
(1)作出△ABC向右平移5个单位长度后对应的图形△A1B1C1;
(2)作出△ABC关于点O的中心对称图形△A2B2C2;
(3)观察发现,△A1B1C1与△A2B2C2成 中心 对称(填“中心”或“轴”),在图中画出它们的对称轴或者对称中心.
【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可.
(2)利用旋转变换的性质分别作出A,B,C的对应点A2,B2,C2即可.
(3)根据中心对称的定义判断即可.
【解答】解:(1)如图,△A1B1C1即为所求.
(2)如图,△A2B2C2即为所求.
(3)观察发现,△A1B1C1与△A2B2C2成中心对称(填“中心”或“轴”),点T即为对称中心.
故答案为:中心.
【点评】本题考查作图旋转变换,平移变换,轴对称变换等知识,解题的关键是掌握平移变换,旋转变换的性质,属于中考常考题型.
18.如图是2022年3月份的日历.任意选择图中的菱形框部分,将每个菱形框部分中去掉中间位置的数之后,相对的两对数分别相乘,再相减,例如:9×11﹣3×17=48,13×15﹣7×21=48.不难发现,结果都是48.
2022年3月
(1)请证明发现的规律;
(2)小明说:他用一个如图所示菱形框,框出5个数字,其中最小数与最大数的积是120,请判断他的说法是否正确.
【分析】(1)设中间的数为a,则另外4个数分别为(a﹣7),(a﹣1),(a+1),(a+7),利用相对的两对数分别相乘再相减,可证出规律成立;
(2)设这5个数中最大数为x,则最小数为(x﹣14),根据最小数与最大数的积是120,即可得出关于x的一元二次方程,解之取其正值,由该值在第一列可知不符合题意,进而可得出小明的说法不正确.
【解答】(1)证明:设中间的数为a,则另外4个数分别为(a﹣7),(a﹣1),(a+1),(a+7),
∴(a﹣1)(a+1)﹣(a﹣7)(a+7)=a2﹣1﹣(a2﹣49)=48.
(2)解:设这5个数中最大数为x,则最小数为(x﹣14),
依题意,得:x(x﹣14)=120,
解得:x1=20,x2=﹣6(不合题意,舍去).
∵20在第一列,
∴不符合题意,
∴小明的说法不正确.
【点评】本题考查了一元二次方程的应用以及规律型:数字的变化类,找准等量关系,正确列出一元二次方程是解题的关键.
19.如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)求AE的长.
【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;
(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.
【解答】(1)证明:连接OD,
∵D为的中点,
∴=,
∴∠BOD=∠BAE,
∴OD∥AE,
∵DE⊥AC,
∴∠AED=90°,
∴∠ODE=90°,
∴OD⊥DE,
则DE为圆O的切线;
(2)解:过点O作OF⊥AC,
∵AC=10,
∴AF=CF=AC=5,
∵∠OFE=∠DEF=∠ODE=90°,
∴四边形OFED为矩形,
∴FE=OD=AB,
∵AB=12,
∴FE=6,
则AE=AF+FE=5+6=11.
【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.
20.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
【分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;
(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;
(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.
【解答】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;
(2)设每千克水果售价为x元,
由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],
解得:x1=65,x2=75,
答:每千克水果售价为65元或75元;
(3)设每千克水果售价为m元,获得的月利润为y元,
由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,
∴当m=70时,y有最大值为9000元,
答:当每千克水果售价为70元时,获得的月利润最大值为9000元.
【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/11/25 23:22:45;用户:菁优网;邮箱:zsjy@163.com;学号:45712606
21.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.
(1)求出表中a,b的值,其中a= ﹣ ,b= .
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
5
…
y=
…
﹣
﹣
a
﹣
﹣3
0
3
b
…
(2)根据表中的数据,在图中补全该函数图象;
(3)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打”√” ,错误的在答题卡上相应的括号内打”×’’;
①该函数图象是轴对称图形,它的对称轴为y轴;
②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3;
③当x<﹣1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小.
(4)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集.(保留1位小数,误差不超过0.2)
【分析】(1)将x=﹣3,3分别代入解析式即可得y的值,再画出函数的图象;
(2)描点、连线,画出函数图象即可;
(3)结合图象可从函数的增减性及对称性进行判断;
(4)根据图象求得即可.
【解答】解:(1)当x=﹣3时,y==﹣;当x=3时,y==,
∴a=﹣,b=,
故答案为﹣,,
(2)画出函数的图象如图:
;
(3)根据函数图象:
①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;
②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确
③当x<﹣1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,说法正确;
故答案为:①.
(4)由图象可知:不等式>2x﹣1的解集为x<﹣1或﹣1<x<1.8.
【点评】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.
22.已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.
(1)求抛物线的解析式和A,B两点的坐标;
(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;
(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.
【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,再令其y值为零,解一元二次方程即可求出A和B的坐标;
(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(x,﹣x2+x+4),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),利用关系式S四边形PBOC=S△BOC+S△PBC得出关于x的二次函数,从而求得其最值;
(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),MN=|﹣++4﹣(﹣)|=|﹣+2m|,分当0<m<8时,或当m<0或m>8时来化简绝对值,从而求解.
【解答】解:(1)∵抛物线的对称轴是直线x=3,
∴﹣=3,解得a=﹣,
∴抛物线的解析式为:y=﹣x2+x+4.
当y=0时,﹣x2+x+4=0,解得x1=﹣2,x2=8,
∴点A的坐标为(﹣2,0),点B的坐标为(8,0).
答:抛物线的解析式为:y=﹣x2+x+4;点A的坐标为(﹣2,0),点B的坐标为(8,0).
(2)当x=0时,y=﹣x2+x+4=4,
∴点C的坐标为(0,4).
设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b得
,解得,
∴直线BC的解析式为y=﹣x+4.
假设存在点P,使四边形PBOC的面积最大,
设点P的坐标为(x,﹣x2+x+4),如图1所示,过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(x,﹣x+4),
则PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x,
∴S四边形PBOC=S△BOC+S△PBC
=×8×4+PD•OB
=16+×8(﹣x2+2x)
=﹣x2+8x+16
=﹣(x﹣4)2+32
∴当x=4时,四边形PBOC的面积最大,最大值是32
∵0<x<8,
∴存在点P(4,6),使得四边形PBOC的面积最大.
答:存在点P,使四边形PBOC的面积最大;点P的坐标为(4,6),四边形PBOC面积的最大值为32.
(3)设点M的坐标为(m,﹣++4)则点N的坐标为(m,﹣),
∴MN=|﹣++4﹣(﹣)|=|﹣+2m|,
又∵MN=3,
∴|﹣+2m|=3,
当0<m<8时,﹣+2m﹣3=0,解得m1=2,m2=6,
∴点M的坐标为(2,6)或(6,4);
当m<0或m>8时,﹣+2m+3=0,解得m3=4﹣2,m4=4+2,
∴点M的坐标为(4﹣2,﹣1)或(4+2,﹣﹣1).
答:点M的坐标为(2,6)、(6,4)、(4﹣2,﹣1)或(4+2,﹣﹣1).
【点评】本题属于二次函数压轴题,综合考查了待定系数法求解析式,解析法求面积及点的坐标的存在性,最大值等问题,难度较大.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2022/11/25 21:51:45;用户:菁优网;邮箱:zsjy@163.com;学号:45712606
相关试卷
这是一份2022-2023学年山东省济宁市嘉祥县八年级(下)期中数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省济宁市嘉祥县2023—2024学年上学期八年级期末数学试卷,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年山东省济宁市嘉祥县九年级(上)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。