所属成套资源:【五年高考真题】最新五年数学(文理科)高考真题分项汇编(原卷+解析)(2023全国卷地区通用)
- 【五年高考真题】最新五年数学高考真题分项汇编——专题12《数列(选填题)》(2023全国卷地区通用) 其他 5 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题13《数列(解答题)》(2023全国卷地区通用) 其他 12 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题15《概率与统计(选择题、填空题)》(理科专用)(2023全国卷地区通用) 其他 3 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题15《概率与统计(选择题、填空题)》(文科专用)(2023全国卷地区通用) 其他 3 次下载
- 【五年高考真题】最新五年数学高考真题分项汇编——专题16《概率与统计(解答题)》(理科专用)(2023全国卷地区通用) 其他 6 次下载
【五年高考真题】最新五年数学高考真题分项汇编——专题14《不等式》(2023全国卷地区通用)
展开
专题14 不等式1.【2022年全国乙卷】若x,y满足约束条件则的最大值是( )A. B.4 C.8 D.12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数为,上下平移直线,可得当直线过点时,直线截距最小,z最大,所以.故选:C.
2.【2021年乙卷文科】若满足约束条件则的最小值为( )A.18 B.10 C.6 D.4【答案】C【解析】【分析】由题意作出可行域,变换目标函数为,数形结合即可得解.【详解】由题意,作出可行域,如图阴影部分所示,由可得点,转换目标函数为,上下平移直线,数形结合可得当直线过点时,取最小值,此时.故选:C.
3.【2021年乙卷文科】下列函数中最小值为4的是( )A. B.C. D.【答案】C【解析】【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出不符合题意,符合题意.【详解】对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,,函数定义域为,而且,如当,,D不符合题意.故选:C.【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.
4.【2020年新课标3卷文科】已知函数f(x)=sinx+,则()A.f(x)的最小值为2 B.f(x)的图象关于y轴对称C.f(x)的图象关于直线对称 D.f(x)的图象关于直线对称【答案】D【解析】【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【详解】可以为负,所以A错;关于原点对称;故B错;关于直线对称,故C错,D对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.
5.【2019年新课标2卷理科】若a>b,则A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│【答案】C【解析】【分析】本题也可用直接法,因为,所以,当时,,知A错,因为是增函数,所以,故B错;因为幂函数是增函数,,所以,知C正确;取,满足,,知D错.【详解】取,满足,,知A错,排除A;因为,知B错,排除B;取,满足,,知D错,排除D,因为幂函数是增函数,,所以,故选C.【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.
6.【2022年新高考2卷】若x,y满足,则( )A. B.C. D.【答案】BC【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为(R),由可变形为,,解得,当且仅当时,,当且仅当时,,所以A错误,B正确;由可变形为,解得,当且仅当时取等号,所以C正确;因为变形可得,设,所以,因此,所以当时满足等式,但是不成立,所以D错误.故选:BC.
7.【2020年新高考1卷(山东卷)】已知a>0,b>0,且a+b=1,则( )A. B.C. D.【答案】ABD【解析】【分析】根据,结合基本不等式及二次函数知识进行求解.【详解】对于A,,当且仅当时,等号成立,故A正确;对于B,,所以,故B正确;对于C,,当且仅当时,等号成立,故C不正确;对于D,因为,所以,当且仅当时,等号成立,故D正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.
8.【2020年新课标1卷理科】若x,y满足约束条件则z=x+7y的最大值为______________.【答案】1【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数即:,其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故答案为:1.【点睛】求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.
9.【2020年新课标2卷文科】若x,y满足约束条件则的最大值是__________.【答案】【解析】【分析】在平面直角坐标系内画出不等式组表示的平面区域,然后平移直线,在平面区域内找到一点使得直线在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线,当直线经过点时,直线在纵轴上的截距最大,此时点的坐标是方程组的解,解得:,因此的最大值为:.故答案为:.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.
10.【2020年新课标3卷理科】若x,y满足约束条件 ,则z=3x+2y的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为,所以,易知截距越大,则越大,平移直线,当经过A点时截距最大,此时z最大,由,得,,所以.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.
11.【2020年新课标3卷理科】关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=对称.④f(x)的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.
12.【2019年新课标2卷文科】若变量x,y满足约束条件则z=3x–y的最大值是___________.【答案】9.【解析】【分析】作出可行域,平移找到目标函数取到最大值的点,求出点的坐标,代入目标函数可得.【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形ABC区域,根据直线中的表示纵截距的相反数,当直线过点时,取最大值为9.【点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.
13.【2018年新课标1卷理科】若,满足约束条件,则的最大值为_____________.【答案】6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.
14.【2018年新课标2卷理科】若满足约束条件 则的最大值为__________.【答案】【解析】【分析】作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.
15.【2018年新课标3卷文科】若变量满足约束条件则的最大值是________.【答案】3【解析】【详解】作出可行域平移直线,由图可知目标函数在直线与的交点处取得最大值3故答案为3.点睛:本题考查线性规划的简单应用,属于基础题.