终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    四川成都市成华区2022年中考数学全真模拟试卷含解析

    立即下载
    加入资料篮
    四川成都市成华区2022年中考数学全真模拟试卷含解析第1页
    四川成都市成华区2022年中考数学全真模拟试卷含解析第2页
    四川成都市成华区2022年中考数学全真模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川成都市成华区2022年中考数学全真模拟试卷含解析

    展开

    这是一份四川成都市成华区2022年中考数学全真模拟试卷含解析,共21页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()

    A.37 B.38 C.50 D.51
    2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为(  )

    A.3 B.4 C.5 D.6
    3.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
    A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
    4.已知x2-2x-3=0,则2x2-4x的值为( )
    A.-6 B.6 C.-2或6 D.-2或30
    5.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    6.cos30°的相反数是(  )
    A. B. C. D.
    7.下列四个几何体中,左视图为圆的是(  )
    A. B. C. D.
    8.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )

    A.90° B.30° C.45° D.60°
    9.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=(  )

    A.6 B.6 C.3 D.3
    10.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.估计无理数在连续整数___与____之间.
    12.计算:的结果为_____.
    13.已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为_____.
    14.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).

    所剪次数
    1
    2
    3
    4

    n
    正三角形个数
    4
    7
    10
    13

    an

    15.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.

    16.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:
    第4个图案有白色地面砖______块;第n个图案有白色地面砖______块.
    17.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.

    三、解答题(共7小题,满分69分)
    18.(10分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.

    19.(5分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
    (1)若AP=1,则AE= ;
    (2)①求证:点O一定在△APE的外接圆上;
    ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
    (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.

    20.(8分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.
    (1)求抛物线的函数表达式;
    (2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;
    (3)若在轴上有且只有一点,使,求的值.

    21.(10分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.

    (1)甲车间每天加工零件为_____件,图中d值为_____.
    (2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.
    (3)甲车间加工多长时间时,两车间加工零件总数为1000件?
    22.(10分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
    (1)求证:DE是⊙O的切线;
    (2)求EF的长.

    23.(12分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.
    (1)求一次函数与反比例函数的解析式;
    (2)记两函数图象的另一个交点为E,求△CDE的面积;
    (3)直接写出不等式kx+b≤的解集.

    24.(14分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题解析:
    第①个图形中有 盆鲜花,
    第②个图形中有盆鲜花,
    第③个图形中有盆鲜花,

    第n个图形中的鲜花盆数为
    则第⑥个图形中的鲜花盆数为
    故选C.
    2、C
    【解析】
    如图所示,∵(a+b)2=21
    ∴a2+2ab+b2=21,
    ∵大正方形的面积为13,2ab=21﹣13=8,
    ∴小正方形的面积为13﹣8=1.
    故选C.
    考点:勾股定理的证明.
    3、A
    【解析】
    方程变形后,配方得到结果,即可做出判断.
    【详解】
    方程,
    变形得:,
    配方得:,即
    故选A.
    【点睛】
    本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
    4、B
    【解析】
    方程两边同时乘以2,再化出2x2-4x求值.
    解:x2-2x-3=0
    2×(x2-2x-3)=0
    2×(x2-2x)-6=0
    2x2-4x=6
    故选B.
    5、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    6、C
    【解析】
    先将特殊角的三角函数值代入求解,再求出其相反数.
    【详解】
    ∵cos30°=,
    ∴cos30°的相反数是,
    故选C.
    【点睛】
    本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.
    7、A
    【解析】
    根据三视图的法则可得出答案.
    【详解】
    解:左视图为从左往右看得到的视图,
    A.球的左视图是圆,
    B.圆柱的左视图是长方形,
    C.圆锥的左视图是等腰三角形,
    D.圆台的左视图是等腰梯形,
    故符合题意的选项是A.
    【点睛】
    错因分析 较容易题.失分原因是不会判断常见几何体的三视图.
    8、C
    【解析】
    根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
    【详解】
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,
    ∵△BEC绕点C旋转至△DFC的位置,
    ∴∠ECF=∠BCD=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    ∴∠EFC=45°.
    故选:C.
    【点睛】
    本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
    9、A
    【解析】
    试题分析:根据垂径定理先求BC一半的长,再求BC的长.
    解:如图所示,设OA与BC相交于D点.

    ∵AB=OA=OB=6,
    ∴△OAB是等边三角形.
    又根据垂径定理可得,OA平分BC,
    利用勾股定理可得BD=
    所以BC=2BD=.
    故选A.
    点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
    10、C
    【解析】
    试题分析:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合.故选C.
    考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3 4
    【解析】
    先找到与11相邻的平方数9和16,求出算术平方根即可解题.
    【详解】
    解:∵,
    ∴,
    ∴无理数在连续整数3与4之间.
    【点睛】
    本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
    12、
    【解析】
    分析:根据二次根式的性质先化简,再合并同类二次根式即可.
    详解:原式=3-5=﹣2.
    点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
    13、1
    【解析】
    设另一根为x2,根据一元二次方程根与系数的关系得出-1•x2=-1,即可求出答案.
    【详解】
    设方程的另一个根为x2,
    则-1×x2=-1,
    解得:x2=1,
    故答案为1.
    【点睛】
    本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-,x1x2=.
    14、3n+1.
    【解析】
    试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.
    试题解析:故剪n次时,共有4+3(n-1)=3n+1.
    考点:规律型:图形的变化类.
    15、﹣1 C.
    【解析】
    ∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,
    ∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);
    ∴﹣1x=9,
    x=﹣1.
    故A表示的数为:x﹣1=﹣1﹣1=﹣6,
    点B表示的数为:2x+1=2×(﹣1)+1=﹣5,
    即等边三角形ABC边长为1,
    数字2012对应的点与﹣4的距离为:2012+4=2016,
    ∵2016÷1=672,C从出发到2012点滚动672周,
    ∴数字2012对应的点将与△ABC的顶点C重合.
    故答案为﹣1,C.
    点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.
    16、18块 (4n+2)块.
    【解析】
    由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.
    【详解】
    解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,
    所以第4个图应该有4×4+2=18块,
    第n个图应该有(4n+2)块.
    【点睛】
    此题考查了平面图形,主要培养学生的观察能力和空间想象能力.
    17、30°
    【解析】
    根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.
    【详解】
    ∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,
    ∴∠BOD=45°,
    又∵∠AOB=15°,
    ∴∠AOD=∠BOD-∠AOB=45°-15°=30°.
    故答案为30°.

    三、解答题(共7小题,满分69分)
    18、见解析
    【解析】
    解:不公平,理由如下:
    列表得:

    1
    2
    3
    2
    1,2
    2,2
    3,2
    3
    1,3
    2,3
    3,3
    4
    1,4
    2,4
    3,4
    由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,
    则甲获胜的概率为、乙获胜的概率为,
    ∵,
    ∴这个游戏对甲、乙双方不公平.
    【点睛】
    考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    19、(1);(2)①证明见解析;②;(3).
    【解析】
    试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;
    (2)①A、P、O、E四点共圆,即可得出结论;
    ②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.
    试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,
    ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
    ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
    ∴∠AEP=∠PBC,∴△APE∽△BCP,
    ∴,即,解得:AE=,
    故答案为:;
    (2)①∵PF⊥EG,∴∠EOF=90°,
    ∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
    ∴点O一定在△APE的外接圆上;
    ②连接OA、AC,如图1所示:
    ∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
    ∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
    ∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
    即点O经过的路径长为;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
    则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
    设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
    ∴,即,解得:AE= =,
    ∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
    即△APE的圆心到AB边的距离的最大值为.

    【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.
    20、(1).;(2)点坐标为;.(3).
    【解析】
    分析:(1)根据已知列出方程组求解即可;
    (2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;
    (3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.
    详解:(1)由题可得:解得,,.
    二次函数解析式为:.
    (2)作轴,轴,垂足分别为,则.

    ,,,
    ,解得,,.
    同理,.

    ①(在下方),,
    ,即,.
    ,,.
    ②在上方时,直线与关于对称.
    ,,.
    ,,.
    综上所述,点坐标为;.
    (3)由题意可得:.
    ,,,即.
    ,,.
    设的中点为,
    点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.
    轴,为的中点,.
    ,,,
    ,即,.
    ,.
    点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.
    21、80 770
    【解析】
    (1)由图象的信息解答即可;
    (2)利用待定系数法确定解析式即可;
    (3)根据题意列出方程解答即可.
    【详解】
    (1)由图象甲车间每小时加工零件个数为720÷9=80个,
    d=770,
    故答案为:80,770
    (2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,
    ∴B(4,120),C(9,770)
    设yBC=kx+b,过B、C,
    ∴,解得,
    ∴y=130x﹣400(4≤x≤9)
    (3)由题意得:80x+130x﹣400=1000,
    解得:x=
    答:甲车间加工天时,两车间加工零件总数为1000件
    【点睛】
    一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.
    22、 (1)见解析;(2) .
    【解析】
    (1)连接OD,根据切线的判定方法即可求出答案;
    (2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
    【详解】
    (1)连接OD,

    ∵△ABC是等边三角形,
    ∴∠C=∠A=∠B=60°,
    ∵OD=OB,
    ∴△ODB是等边三角形,
    ∴∠ODB=60°
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∴DE⊥AC
    ∴OD⊥DE,
    ∴DE是⊙O的切线
    (2)∵OD∥AC,点O是AB的中点,
    ∴OD为△ABC的中位线,
    ∴BD=CD=2
    在Rt△CDE中,
    ∠C=60°,
    ∴∠CDE=30°,
    ∴CE=CD=1
    ∴AE=AC﹣CE=4﹣1=3
    在Rt△AEF中,
    ∠A=60°,
    ∴EF=AE•sinA=3×sin60°=
    【点睛】
    本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
    23、(1)y=﹣2x+1;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;
    【解析】
    (1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.
    (2)联立方程组求解出交点坐标即可.
    (3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.
    【详解】
    (1)由已知,OA=6,OB=1,OD=4,
    ∵CD⊥x轴,
    ∴OB∥CD,
    ∴△ABO∽△ACD,
    ∴,
    ∴,
    ∴CD=20,
    ∴点C坐标为(﹣4,20),
    ∴n=xy=﹣80.
    ∴反比例函数解析式为:y=﹣,
    把点A(6,0),B(0,1)代入y=kx+b得:,
    解得:.
    ∴一次函数解析式为:y=﹣2x+1,
    (2)当﹣=﹣2x+1时,解得,
    x1=10,x2=﹣4,
    当x=10时,y=﹣8,
    ∴点E坐标为(10,﹣8),
    ∴S△CDE=S△CDA+S△EDA=.
    (3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,
    ∴由图象得,x≥10,或﹣4≤x<0.
    【点睛】
    本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.
    24、51.96米.
    【解析】
    先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
    【详解】
    解:∵∠CBD=1°,∠CAB=30°,
    ∴∠ACB=30°.
    ∴AB=BC=1.
    在Rt△BDC中,

    ∴(米).
    答:文峰塔的高度CD约为51.96米.
    【点睛】
    本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.

    相关试卷

    2024年四川省成都市成华区中考数学二诊试卷(含解析):

    这是一份2024年四川省成都市成华区中考数学二诊试卷(含解析),共30页。试卷主要包含了选择题.,填空题,解答题等内容,欢迎下载使用。

    2023年四川省成都市成华区中考数学二诊试卷(含解析):

    这是一份2023年四川省成都市成华区中考数学二诊试卷(含解析),共28页。试卷主要包含了 3月21日是国际森林日, 下列运算中,计算正确的是, 分解因式等内容,欢迎下载使用。

    四川成都市成华区2022年中考数学五模试卷含解析:

    这是一份四川成都市成华区2022年中考数学五模试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如果,那么,下列各数,某反比例函数的图象经过点等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map