终身会员
搜索
    上传资料 赚现金

    2021-2022学年四川省成都市成华区中考数学全真模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年四川省成都市成华区中考数学全真模拟试卷含解析第1页
    2021-2022学年四川省成都市成华区中考数学全真模拟试卷含解析第2页
    2021-2022学年四川省成都市成华区中考数学全真模拟试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省成都市成华区中考数学全真模拟试卷含解析

    展开

    这是一份2021-2022学年四川省成都市成华区中考数学全真模拟试卷含解析,共18页。试卷主要包含了若与 互为相反数,则x的值是,4的平方根是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )

    A. B.
    C. D.
    2.下列由左边到右边的变形,属于因式分解的是(  ).
    A.(x+1)(x-1)=x2-1
    B.x2-2x+1=x(x-2)+1
    C.a2-b2=(a+b)(a-b)
    D.mx+my+nx+ny=m(x+y)+n(x+y)
    3.若与 互为相反数,则x的值是(  )
    A.1 B.2 C.3 D.4
    4.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为(  )

    A.25° B.50° C.60° D.30°
    5. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=(  )

    A.20° B.30° C.40° D.50°
    6.4的平方根是( )
    A.4 B.±4 C.±2 D.2
    7.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为(  )
    A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
    8.如图,在△ABC中,AC=BC,点D在BC的延长线上,AE∥BD,点ED在AC同侧,若∠CAE=118°,则∠B的大小为(  )

    A.31° B.32° C.59° D.62°
    9.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
    A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
    10.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G 到BE的距离是(   )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.

    12.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.

    13.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.

    14.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
    15.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.

    16.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).

    17.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.

    (1)直接写出点E的坐标(用含t的代数式表示):   ;
    (2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
    (3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
    19.(5分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.

    20.(8分)如图,已知在中,,是的平分线.

    (1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
    (2)判断直线与的位置关系,并说明理由.
    21.(10分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
    请填空完成下列证明.
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则 CD=AB=AD (   ).
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形.
    ∴∠A=   °.
    ∴∠B=90°﹣∠A=30°.

    22.(10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)

    23.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
    (1)求一次函数y=kx+b的关系式;
    (2)结合图象,直接写出满足kx+b>的x的取值范围;
    (3)若点P在x轴上,且S△ACP=,求点P的坐标.

    24.(14分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
    (1)求证:四边形BCFE是平行四边形;
    (2)当∠ACB=60°时,求证:四边形BCFE是菱形.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据图象可设二次函数的顶点式,再将点(0,0)代入即可.
    【详解】
    解:根据图象,设函数解析式为
    由图象可知,顶点为(1,3)
    ∴,
    将点(0,0)代入得
    解得

    故答案为:D.
    【点睛】
    本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.
    2、C
    【解析】
    因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
    【详解】
    解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
    故选择C.
    【点睛】
    本题考查了因式分解的定义,牢记定义是解题关键.
    3、D
    【解析】
    由题意得+=0,
    去分母3x+4(1-x)=0,
    解得x=4.故选D.
    4、A
    【解析】
    如图,∵∠BOC=50°,
    ∴∠BAC=25°,
    ∵AC∥OB,
    ∴∠OBA=∠BAC=25°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=25°.
    故选A.
    5、C
    【解析】
    由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
    【详解】

    ∵∠1=50°,
    ∴∠3=∠1=50°,
    ∴∠2=90°−50°=40°.
    故选C.
    【点睛】
    本题主要考查平行线的性质,熟悉掌握性质是关键.
    6、C
    【解析】
    根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选D.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    7、B
    【解析】
    根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
    【详解】
    解:135000用科学记数法表示为:1.35×1.
    故选B.
    【点睛】
    科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、A
    【解析】
    根据等腰三角形的性质得出∠B=∠CAB,再利用平行线的性质解答即可.
    【详解】
    ∵在△ABC中,AC=BC,
    ∴∠B=∠CAB,
    ∵AE∥BD,∠CAE=118°,
    ∴∠B+∠CAB+∠CAE=180°,
    即2∠B=180°−118°,
    解得:∠B=31°,
    故选A.
    【点睛】
    此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出∠B=∠CAB.
    9、C
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
    10、A
    【解析】
    根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.
    【详解】
    连接GB、GE,

    由已知可知∠BAE=45°.
    又∵GE为正方形AEFG的对角线,
    ∴∠AEG=45°.
    ∴AB∥GE.
    ∵AE=4,AB与GE间的距离相等,
    ∴GE=8,S△BEG=S△AEG=SAEFG=1.
    过点B作BH⊥AE于点H,
    ∵AB=2,
    ∴BH=AH=.
    ∴HE=3.
    ∴BE=2.
    设点G到BE的距离为h.
    ∴S△BEG=•BE•h=×2×h=1.
    ∴h=.
    即点G到BE的距离为.
    故选A.
    【点睛】
    本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.

    二、填空题(共7小题,每小题3分,满分21分)
    11、8
    【解析】
    如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
    【详解】
    解:如图,连接OC.

    ∵AB是⊙O切线,
    ∴OC⊥AB,AC=BC,
    在Rt△ACO中,∵∠ACO=90°,OC=OD=2
    tan∠OAB=,
    ∴,
    ∴AC=4,
    ∴AB=2AC=8,
    故答案为8
    【点睛】
    本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
    12、或10
    【解析】
    试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:
    如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.

    13、1
    【解析】
    根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.
    【详解】
    ∵AB=AC,∠A=32°,
    ∴∠ABC=∠ACB=74°,
    又∵BC=DC,
    ∴∠CDB=∠CBD=∠ACB=1°,
    故答案为1.
    【点睛】
    本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.
    14、.
    【解析】
    根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为.
    考点:概率公式.
    15、1.
    【解析】
    寻找规律:
    上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;
    右下是:从第二个图形开始,左下数字减上面数字差的平方:
    (4-2)2,(9-3)2,(16-4)2,…
    ∴a=(36-6)2=1.
    16、.
    【解析】
    作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
    【详解】
    作AH∥EF交BC于H.

    ∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
    ∵AE=ED=HF,∴.
    ∵BC=2AD,∴2.
    ∵BF=FC,∴,∴.
    ∵.
    故答案为:.
    【点睛】
    本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    17、(10,3)
    【解析】
    根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.
    【详解】
    ∵四边形AOCD为矩形,D的坐标为(10,8),
    ∴AD=BC=10,DC=AB=8,
    ∵矩形沿AE折叠,使D落在BC上的点F处,
    ∴AD=AF=10,DE=EF,
    在Rt△AOF中,OF= =6,
    ∴FC=10−6=4,
    设EC=x,则DE=EF=8−x,
    在Rt△CEF中,EF2=EC2+FC2,
    即(8−x)2=x2+42,
    解得x=3,即EC的长为3.
    ∴点E的坐标为(10,3).

    三、解答题(共7小题,满分69分)
    18、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
    【解析】
    (1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
    由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
    ∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
    又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
    在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
    ∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
    (2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
    ∴AD=t(4﹣t),
    ∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
    ∵EG⊥x轴、FP⊥x轴,且EG=FP,
    ∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
    ∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
    ∴当t=2时,S有最小值是16;
    (3)①假设∠FBD为直角,则点F在直线BC上,
    ∵PF=OP<AB,
    ∴点F不可能在BC上,即∠FBD不可能为直角;
    ②假设∠FDB为直角,则点D在EF上,
    ∵点D在矩形的对角线PE上,
    ∴点D不可能在EF上,即∠FDB不可能为直角;
    ③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
    如图2,作FH⊥BD于点H,
    则FH=PA,即4﹣t=6﹣t,方程无解,
    ∴假设不成立,即△BDF不可能是等腰直角三角形.

    19、证明见试题解析.
    【解析】
    试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.
    试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D
    考点:三角形全等的证明
    20、(1)见解析;(2)与相切,理由见解析.
    【解析】
    (1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
    (2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
    【详解】
    (1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
    ②作直线,与相交于点,
    ③以为圆心,为半径作圆,如图即为所作;

    (2)与相切,理由如下:
    连接OD,
    为半径,

    是等腰三角形,

    平分,






    为半径,
    与相切.
    【点睛】
    本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.
    21、直角三角形斜边上的中线等于斜边的一半;1.
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.
    【详解】
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形,
    ∴∠A=1°,
    ∴∠B=90°﹣∠A=30°.
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.
    22、2.7米
    【解析】
    解:作BF⊥DE于点F,BG⊥AE于点G

    在Rt△ADE中
    ∵tan∠ADE=,
    ∴DE="AE" ·tan∠ADE=15
    ∵山坡AB的坡度i=1:,AB=10
    ∴BG=5,AG=,
    ∴EF=BG=5,BF=AG+AE=+15
    ∵∠CBF=45°
    ∴CF=BF=+15
    ∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7
    答:这块宣传牌CD的高度为2.7米.
    23、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
    【解析】
    (1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
    (1)根据函数图像判断即可;
    (3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
    【详解】
    (1)∵点A(m,3),B(-6,n)在双曲线y=上,
    ∴m=1,n=-1,
    ∴A(1,3),B(-6,-1).
    将(1,3),B(-6,-1)带入y=kx+b,
    得:,解得,.
    ∴直线的解析式为y=x+1.
    (1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
    (3)当y=x+1=0时,x=-4,
    ∴点C(-4,0).
    设点P的坐标为(x,0),如图,

    ∵S△ACP=S△BOC,A(1,3),B(-6,-1),
    ∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
    解得:x1=-6,x1=-1.
    ∴点P的坐标为(-6,0)或(-1,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
    24、(1)见解析;(2)见解析
    【解析】
    (1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
    (2)根据菱形的判定证明即可.
    【详解】
    (1)证明::∵D.E为AB,AC中点
    ∴DE为△ABC的中位线,DE=BC,
    ∴DE∥BC,
    即EF∥BC,
    ∵EF=BC,
    ∴四边形BCEF为平行四边形.
    (2)∵四边形BCEF为平行四边形,
    ∵∠ACB=60°,
    ∴BC=CE=BE,
    ∴四边形BCFE是菱形.

    【点睛】
    本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

    相关试卷

    2024年四川省成都市成华区中考数学二诊试卷(含解析):

    这是一份2024年四川省成都市成华区中考数学二诊试卷(含解析),共30页。试卷主要包含了选择题.,填空题,解答题等内容,欢迎下载使用。

    2023年四川省成都市成华区中考数学二诊试卷(含解析):

    这是一份2023年四川省成都市成华区中考数学二诊试卷(含解析),共28页。试卷主要包含了 3月21日是国际森林日, 下列运算中,计算正确的是, 分解因式等内容,欢迎下载使用。

    四川省成都市成华区重点中学2021-2022学年中考数学押题试卷含解析:

    这是一份四川省成都市成华区重点中学2021-2022学年中考数学押题试卷含解析,共19页。试卷主要包含了计算,下列说法,3的倒数是,下列计算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map