终身会员
搜索
    上传资料 赚现金
    高中数学选择性必修一 1.4.2 用空间向量研究距离、夹角问题(课件)
    立即下载
    加入资料篮
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)01
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)02
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)03
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)04
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)05
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)06
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)07
    高中数学选择性必修一  1.4.2 用空间向量研究距离、夹角问题(课件)08
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教案配套ppt课件

    展开
    这是一份人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教案配套ppt课件,共41页。PPT课件主要包含了问题导学,题型探究,当堂训练,学习目标,答案A,答案30°等内容,欢迎下载使用。

    1.理解直线与平面所成角的概念.2.能够利用向量方法解决线线、线面、面面的夹角问题.3.体会用空间向量解决立体几何问题的三步曲.
    知识点 利用空间向量求空间角思考1 空间角包括哪些角?
    问题导学     
    答案 线线角、线面角、二面角.
    思考2 求解空间角常用的方法有哪些?
    答案 传统方法和向量法.
    梳理 空间角包括线线角、线面角、二面角,这三种角的定义确定了它们相应的取值范围,结合它们的取值范围可以用向量法进行求解.(1)线线角:设两条直线的方向向量分别为a,b,且a与b的夹角为φ,两条直线所成角为θ,则cs θ=____________.
    (3)二面角的求法:①转化为分别在二面角的两个半平面内且与棱都垂直的两条直线上的方向向量的夹角(注意:要特别关注两个向量的方向).
    ②先求出二面角一个面内一点到另一面的距离及到棱的距离,然后通过解直角三角形求角.
    如图所示,已知二面角α-l-β,在α内取一点P,过P作PO⊥β,PA⊥l,垂足分别为O,A,连接AO,则AO⊥l成立,所以∠PAO就是二面角的平面角.
    ③先求出二面角的两个半平面的法向量的夹角,然后结合图形与题意判断求出的是二面角的大小,还是它的补角的大小,从而确定二面角的大小.
    类型一 求两条异面直线所成的角
    解 建立如图所示的空间直角坐标系,
    在解决立体几何中两异面直线所成角问题时,若能构建空间直角坐标系,则建立空间直角坐标系,利用向量法求解.但应用向量法时一定要注意向量所成的角与异面直线所成角的区别.
    跟踪训练1 正方体ABCD-A1B1C1D1中,E、F分别是A1D1、A1C1的中点,求异面直线AE与CF所成角的余弦值.
    解 不妨设正方体棱长为2,分别取DA,DC,DD1所在直线为x轴,y轴,z轴,建立如图所示空间直角坐标系,则A(2,0,0),C(0,2,0),E(1,0,2),F(1,1,2),
    类型二 求直线和平面所成的角
    又AB∩AA1=A,∴MC1⊥平面ABB1A1.∴∠C1AM是AC1与侧面A1ABB1所成的角.
    用向量法求线面角的一般步骤是:先利用图形的几何特征建立适当的空间直角坐标系,再用向量的有关知识求解线面角.方法二给出了用向量法求线面角的常用方法,即先求平面法向量与斜线夹角,再进行换算.
    跟踪训练2 如图所示,已知直角梯形ABCD,其中AB=BC=2AD,AS⊥平面ABCD,AD∥BC,AB⊥BC,且AS=AB.求直线SC与底面ABCD的夹角θ的余弦值.
    解 由题设条件知,以点A为坐标原点,分别以AD,AB,AS所在直线为x轴,y轴,z轴,建立空间直角坐标系(如图所示).
    类型三 求二面角例3 在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,E是PD的中点,求平面EAC与平面ABCD的夹角.
    解 方法一 如图,以A为原点,分别以AC,AB,AP所在直线为x轴,y轴,z轴建立空间直角坐标系. 设PA=AB=a,AC=b,连接BD与AC交于点O,取AD中点F,
    (1)当空间直角坐标系容易建立(有特殊的位置关系)时,用向量法求解二面角无需作出二面角的平面角.只需求出平面的法向量,经过简单的运算即可求出,有时不易判断两法向量的夹角的大小就是二面角的大小(相等或互补),但我们可以根据图形观察得到结论,因为二面角是钝二面角还是锐二面角一般是明显的.(2)注意法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角.
    解 如图所示建立空间直角坐标系,
    当堂训练     
    解析 取AC的中点为E,连接BE,则BE⊥AC,建立如图所示的空间直角坐标系,
    ∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,BE⊥AC,BE⊂平面ABC, ∴BE⊥平面AA1C1C,
    设AA1=2AB=2,则B(1,1,0),C(0,1,0),D(0,0,0),C1(0,1,2),
    令z=1,则y=-2,x=2,所以n=(2,-2,1).设直线CD与平面BDC1所成的角为θ,
    4.正△ABC与正△BCD所在平面垂直,则二面角A-BD-C的正弦值为_______.
    解析 取BC的中点O,连接AO,DO,建立如图所示的空间直角坐标系,
    解析 建立如图所示的空间直角坐标系,
    所以斜线PC与平面ABCD的法向量所在直线所成角为60°,所以斜线PC与平面ABCD所成角为30°.
    (2)利用法向量求二面角的余弦值的步骤:第一步,求两平面的法向量;第二步,求两法向量的夹角的余弦值;第三步,由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.
    相关课件

    高中数学第一章 空间向量与立体几何1.4 空间向量的应用课文配套课件ppt: 这是一份高中数学第一章 空间向量与立体几何1.4 空间向量的应用课文配套课件ppt,共26页。PPT课件主要包含了复习引入,平行关系,举例讲解,大于关系,相反向量,问题变式,练习延伸,课堂小结,课后作业等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教课内容ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教课内容ppt课件,共28页。PPT课件主要包含了点到平面的距离,的是什么方法等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第一册1.4 空间向量的应用教课课件ppt,共37页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map