山西省吕梁市交城县2021-2022学年中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
2.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )
A.6 B.7 C.8 D.9
3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15 B.0.2 C.0.25 D.0.3
4.如图,,交于点,平分,交于. 若,则 的度数为( )
A.35o B.45o C.55o D.65o
5.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
6.下列说法错误的是( )
A.必然事件的概率为1
B.数据1、2、2、3的平均数是2
C.数据5、2、﹣3、0的极差是8
D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
7.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )
A.左、右两个几何体的主视图相同
B.左、右两个几何体的左视图相同
C.左、右两个几何体的俯视图不相同
D.左、右两个几何体的三视图不相同
8.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
9.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是( )
A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7
10.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是( )
A.
B.
C.
D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.
12.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
13.已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为______.
14.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .
15.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.
16.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为 ________.
三、解答题(共8题,共72分)
17.(8分)如图,,,,求证:。
18.(8分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.
19.(8分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
20.(8分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
21.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程的解集(请直接写出答案).
22.(10分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.
(1)求抛物线的解析式;
(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
②当k= 时,点F是线段AB的中点;
(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.
23.(12分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本). 若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润.若每份套餐售价不超过10元.
①试写出与的函数关系式;
②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.
24.先化简分式: (-)÷∙,再从-3、-3、2、-2
中选一个你喜欢的数作为的值代入求值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.
【详解】
∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,
∴D是该几何体的主视图.
故选D.
【点睛】
本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
2、A
【解析】
试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.
故选A.
考点:多边形的内角和定理以及多边形的外角和定理
3、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
4、D
【解析】
分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.
详解:
又∵EF平分∠BEC,
.
故选D.
点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.
5、C
【解析】
由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
6、D
【解析】
试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
B.数据1、2、2、3的平均数是=2,本项正确;
C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
故选D.
考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件
7、B
【解析】
直接利用已知几何体分别得出三视图进而分析得出答案.
【详解】
A、左、右两个几何体的主视图为:
,
故此选项错误;
B、左、右两个几何体的左视图为:
,
故此选项正确;
C、左、右两个几何体的俯视图为:
,
故此选项错误;
D、由以上可得,此选项错误;
故选B.
【点睛】
此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.
8、C
【解析】
试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
考点:科学记数法—表示较小的数.
9、A
【解析】
先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.
【详解】
解:解不等式3x﹣m+1>0,得:x>,
∵不等式有最小整数解2,
∴1≤<2,
解得:4≤m<7,
故选A.
【点睛】
本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.
10、C
【解析】
首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.
故选C.
点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2或1
【解析】
点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.
【详解】
解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;
当点在圆内时,则这个圆的半径是(6+2)÷2=1.
故答案为2或1.
【点睛】
此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.
12、
【解析】
过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
【详解】
如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴AD=2,
∴AC=,
∴AB=AC=,
∴sinα=,
故答案为.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
13、
【解析】
试题分析:当n=3时,A=≈0.3178,B=1,A<B;
当n=4时,A=≈0.2679,B=≈0.4142,A<B;
当n=5时,A=≈0.2631,B=≈0.3178,A<B;
当n=6时,A=≈0.2134,B=≈0.2679,A<B;
……
以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n≥3时,A、B的关系始终是A<B.
14、.
【解析】
试题分析:画树状图为:
共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.
考点:列表法与树状图法.
15、(,0)
【解析】
试题解析:过点B作BD⊥x轴于点D,
∵∠ACO+∠BCD=90°,
∠OAC+∠ACO=90°,
∴∠OAC=∠BCD,
在△ACO与△BCD中,
,
∴△ACO≌△BCD(AAS)
∴OC=BD,OA=CD,
∵A(0,2),C(1,0)
∴OD=3,BD=1,
∴B(3,1),
∴设反比例函数的解析式为y=,
将B(3,1)代入y=,
∴k=3,
∴y=,
∴把y=2代入y=,
∴x=,
当顶点A恰好落在该双曲线上时,
此时点A移动了个单位长度,
∴C也移动了个单位长度,
此时点C的对应点C′的坐标为(,0)
故答案为(,0).
16、1
【解析】
如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.
【详解】
在Rt△ABC中,由勾股定理.得
AB==10,
∵DE⊥AB,
∴∠AED=∠C=90°.
∵∠A=∠A,
∴△AED∽△ACB,
∴,
∴,
∴AD=1.
故答案为1
【点睛】
本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.
三、解答题(共8题,共72分)
17、见解析
【解析】
据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.
【详解】
证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.
∵在△ABC和△AED中,
∴△ABC≌△AED(AAS).
【点睛】
此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
18、(1)见解析;(2)
【解析】
分析:
(1)如下图,连接OD,由OA=OD可得∠DAO=∠ADO,结合∠CAD=∠DAB,可得∠CAD=∠ADO,从而可得OD∥AC,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD是⊙O的切线;
(2)如下图,连接BD,由AB是⊙O的直径可得∠ADB=90°=∠C,结合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.
详解:
(1)如下图,连接OD.
∵OA=OD,
∴∠DAB=∠ODA,
∵∠CAD=∠DAB,
∴∠ODA=∠CAD
∴AC∥OD
∴∠C+∠ODC=180°
∵∠C=90°
∴∠ODC=90°
∴OD⊥CD,
∴CD是⊙O的切线.
(2)如下图,连接BD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=9,AD=6,
∴BD===3,
∵∠CAD=∠BAD,∠C=∠ADB=90°,
∴△ACD∽△ADB,
∴,
∴,
∴CD=.
点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.
19、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)证明见解析.
【解析】
分析:(1)由已知代入点坐标即可;
(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;
(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.
详解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上
∴k=8
∴y1=
∵a=2
∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)
把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,
,
解得,
∴y2=x﹣2;
②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方,
∴由图象得:2<x<4;
(2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO,
∵O为AA′中点,
S△AOB=S△AOA′=8
∵点A、B在双曲线上
∴S△AOC=S△BOD
∴S△AOB=S四边形ACDB=8
由已知点A、B坐标都表示为(a,)(3a,)
∴,
解得k=6;
(3)由已知A(a,),则A′为(﹣a,﹣).
把A′代入到y=,得:﹣,
∴n=,
∴A′B解析式为y=﹣.
当x=a时,点D纵坐标为,
∴AD=
∵AD=AF,
∴点F和点P横坐标为,
∴点P纵坐标为.
∴点P在y1═(x>0)的图象上.
点睛:本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.
20、R= 或R=
【解析】
解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.
考点:圆与直线的位置关系.
21、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
【解析】
试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
试题解析:(1)∵B(2,﹣4)在y=上,
∴m=﹣1.
∴反比例函数的解析式为y=﹣.
∵点A(﹣4,n)在y=﹣上,
∴n=2.
∴A(﹣4,2).
∵y=kx+b经过A(﹣4,2),B(2,﹣4),
∴,
解之得.
∴一次函数的解析式为y=﹣x﹣2.
(2)∵C是直线AB与x轴的交点,
∴当y=0时,x=﹣2.
∴点C(﹣2,0).
∴OC=2.
∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
(3)不等式的解集为:﹣4<x<0或x>2.
22、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.
【解析】
(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.
(2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.
②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.
(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论
将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.
【详解】
(1)解:将点(-2,2)和(4,5)分别代入,得:
解得:
∴抛物线的解析式为:.
(2)①证明:过点B作BD⊥y轴于点D,
设B(m,),
∵BC⊥x轴,BD⊥y轴,F(0,2)
∴BC=,
BD=|m|,DF=
∴BC=BF
∴∠BFC=∠BCF
又BC∥y轴,∴∠OFC=∠BCF
∴∠BFC=∠OFC
∴FC平分∠BFO .
②
(说明:写一个给1分)
(3)存在点B,使△MBF的周长最小.
过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F
由(2)知B1F=B1N,BF=BE
∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN
△MBF的周长=MF+MB+BF=MF+MB+BE
根据垂线段最短可知:MN<MB+BE
∴当点B在点B1处时,△MBF的周长最小
∵M(3,6),F(0,2)
∴,MN=6
∴△MBF周长的最小值=MF+MN=5+6=11
将x=3代入,得:
∴B1(3,)
将F(0,2)和B1(3,)代入y=kx+b,得:
,
解得:
∴此时直线l的解析式为:.
【点睛】
本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.
23、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能, 11元.
【解析】
(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案.
【详解】
解:(1)①y=400(x﹣5)﹣2.(5<x≤10),
②依题意得:400(x﹣5)﹣2≥800, 解得:x≥8.5,
∵5<x≤10,且每份套餐的售价x(元)取整数, ∴每份套餐的售价应不低于9元.
(2)依题意可知:每份套餐售价提高到10元以上时,
y=(x﹣5)[400﹣40(x﹣10)]﹣2,
当y=1560时, (x﹣5)[400﹣40(x﹣10)]﹣2=1560,
解得:x1=11,x2=14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.
故该套餐售价应定为11元.
【点睛】
本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.
24、 ;5
【解析】
原式=(-)∙
=∙
=∙
=
a=2,原式=5
2023年山西省吕梁市交城县中考数学一模试卷(含答案解析): 这是一份2023年山西省吕梁市交城县中考数学一模试卷(含答案解析),共22页。试卷主要包含了 计算÷的结果是, 下列运算正确的是等内容,欢迎下载使用。
山西省吕梁市交城县2022-2023学年九年级上学期期中考试数学试题: 这是一份山西省吕梁市交城县2022-2023学年九年级上学期期中考试数学试题,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年山西省吕梁市交城县七年级(下)期中数学试卷(含解析): 这是一份2021-2022学年山西省吕梁市交城县七年级(下)期中数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。