|试卷下载
终身会员
搜索
    上传资料 赚现金
    陕西省汉中南郑区五校联考2021-2022学年中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    陕西省汉中南郑区五校联考2021-2022学年中考数学适应性模拟试题含解析01
    陕西省汉中南郑区五校联考2021-2022学年中考数学适应性模拟试题含解析02
    陕西省汉中南郑区五校联考2021-2022学年中考数学适应性模拟试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省汉中南郑区五校联考2021-2022学年中考数学适应性模拟试题含解析

    展开
    这是一份陕西省汉中南郑区五校联考2021-2022学年中考数学适应性模拟试题含解析,共21页。试卷主要包含了不等式3x<2等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,下列各数中,数轴上点A表示的可能是( )

    A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
    2.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    3.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为(  )

    A.16 B.14 C.12 D.10
    4.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )

    A. B. C. D.
    5.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    6.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是(  )

    A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
    7.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
    A. B. C. D.
    8.不等式3x<2(x+2)的解是(  )
    A.x>2 B.x<2 C.x>4 D.x<4
    9.如图是一个几何体的三视图,则这个几何体是( )

    A. B. C. D.
    10.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为(  )
    A.172 B.171 C.170 D.168
    11.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是    

    A. B. C. D.
    12.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是  

    A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.

    14.如果分式的值是0,那么x的值是______.
    15.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .

    16.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为________.

    17.函数y= 中,自变量x的取值范围为_____.
    18.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解不等式组,
    请结合题意填空,完成本题的解答.
    (1)解不等式①,得_____;
    (2)解不等式②,得_____;
    (3)把不等式①和②的解集在数轴上表示出来;
    (4)原不等式组的解集为_____.

    20.(6分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)

    21.(6分)如图,在▱ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
    (1)当点R与点B重合时,求t的值;
    (2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
    (3)当点R落在▱ABCD的外部时,求S与t的函数关系式;
    (4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.

    22.(8分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.
    23.(8分)如图所示,在△ABC中,BO、CO是角平分线.∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.若∠A=n°,求∠BOC的度数.

    24.(10分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
    (1)求证:PC是⊙O的切线;
    (2)设OP=AC,求∠CPO的正弦值;
    (3)设AC=9,AB=15,求d+f的取值范围.

    25.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.

    (1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
    (2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
    26.(12分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
    (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
    (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
    27.(12分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:

    成本
    (单位:万元/亩)
    销售额
    (单位:万元/亩)
    郁金香
    2.4
    3
    玫瑰
    2
    2.5
    (1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
    (2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
    故根据数轴可知,
    故选C
    2、C
    【解析】
    根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
    ∴设旋转后的函数解析式为y=﹣x﹣1,
    在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
    即一次函数y=﹣x+2与x轴交点为(4,1).
    一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
    即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
    ∴m==1,
    故选:C.
    【点睛】
    本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
    3、B
    【解析】
    根据切线长定理进行求解即可.
    【详解】
    ∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
    ∴AF=AD=2,BD=BE,CE=CF,
    ∵BE+CE=BC=5,
    ∴BD+CF=BC=5,
    ∴△ABC的周长=2+2+5+5=14,
    故选B.
    【点睛】
    本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
    4、C
    【解析】
    试题解析:∵四边形ABCD是平行四边形,


    故选C.
    5、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    6、A
    【解析】
    根据中位数,众数,平均数,方差等知识即可判断;
    【详解】
    观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
    故选A.
    【点睛】
    本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.
    7、C
    【解析】
    由实际问题抽象出方程(行程问题).
    【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
    ∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
    ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
    8、D
    【解析】
    不等式先展开再移项即可解答.
    【详解】
    解:不等式3x<2(x+2),
    展开得:3x<2x+4,
    移项得:3x-2x<4,
    解之得:x<4.
    故答案选D.
    【点睛】
    本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
    9、B
    【解析】
    试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
    考点:由三视图判断几何体.
    10、C
    【解析】
    先把所给数据从小到大排列,然后根据中位数的定义求解即可.
    【详解】
    从小到大排列:
    150,164,168,168,,172,176,183,185,
    ∴中位数为:(168+172)÷2=170.
    故选C.
    【点睛】
    本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
    11、D
    【解析】
    根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
    【详解】
    ①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
    ②时,由图像可知此时,即,故②正确.
    ③由对称轴,可得,所以错误,故③错误;
    ④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
    故答案选D.
    【点睛】
    本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
    12、B
    【解析】
    先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.
    【详解】
    解:∵直径CD⊥弦AB,
    ∴弧AD =弧BD,
    ∴∠C=∠BOD.
    故选B.
    【点睛】
    本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
    【详解】
    根据题意,作△EFC,

    树高为CD,且∠ECF=90°,ED=3,FD=12,
    易得:Rt△EDC∽Rt△DCF,
    有,即DC2=ED×FD,
    代入数据可得DC2=31,
    DC=1,
    故答案为1.
    14、1.
    【解析】
    根据分式为1的条件得到方程,解方程得到答案.
    【详解】
    由题意得,x=1,故答案是:1.
    【点睛】
    本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
    15、.
    【解析】
    试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.

    考点:扇形的面积计算.
    16、(a+b)2﹣(a﹣b)2=4ab
    【解析】
    根据长方形面积公式列①式,根据面积差列②式,得出结论.
    【详解】
    S阴影=4S长方形=4ab①,
    S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,
    由①②得:(a+b)2﹣(a﹣b)2=4ab.
    故答案为(a+b)2﹣(a﹣b)2=4ab.
    【点睛】
    本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.
    17、x≠1.
    【解析】
    该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.
    【详解】
    根据题意得:x−1≠0,
    解得:x≠1.
    故答案为x≠1.
    【点睛】
    本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.
    18、a+b=1.
    【解析】
    试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.
    考点:1角平分线;2平面直角坐标系.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.
    【解析】
    根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
    【详解】
    解:(1)解不等式①,得x>1;
    (1)解不等式②,得 x≤1;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为:1<x≤1.
    【点睛】
    本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
    20、隧道最短为1093米.
    【解析】
    【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.
    【详解】如图,作BD⊥AC于D,

    由题意可得:BD=1400﹣1000=400(米),
    ∠BAC=30°,∠BCA=45°,
    在Rt△ABD中,
    ∵tan30°=,即,
    ∴AD=400(米),
    在Rt△BCD中,
    ∵tan45°=,即,
    ∴CD=400(米),
    ∴AC=AD+CD=400+400≈1092.8≈1093(米),
    答:隧道最短为1093米.
    【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.
    21、(1);(2)(9﹣t);(3)①S =﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.
    【解析】
    (1)根据题意点R与点B重合时t+t=3,即可求出t的值;
    (2)根据题意运用t表示出PQ即可;
    (3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;
    (3)根据等腰三角形的性质即可得出结论.
    【详解】
    解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,
    ∴PQ=PR,∠QPR=90°,
    ∴△QPR为等腰直角三角形.
    当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=t.
    ∵点R与点B重合,
    ∴AP+PR=t+t=AB=3,
    解得:t=.
    (2)当点P在BC边上时,3≤t≤9,CP=9﹣t,
    ∵tanA=,
    ∴tanC=,sinC=,
    ∴PQ=CP•sinC=(9﹣t).
    (3)①如图1中,当<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.

    ∵△KBR∽△QAR,
    ∴ =,
    ∴ =,
    ∴KM=(t﹣3)=t﹣,
    ∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.
    ②如图2中,当3<t≤3时,重叠部分是四边形PQKB.

    S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.
    ③如图3中,当3<t<9时,重叠部分是△PQK.

    S=•S△PQC=××(9﹣t)•(9﹣t)=(9﹣t)2.
    (3)如图3中,

    ①当DC=DP1=3时,易知AP1=3,t=3.
    ②当DC=DP2时,CP2=2•CD•,
    ∴BP2=,
    ∴t=3+.
    ③当CD=CP3时,t=4.
    ④当CP3=DP3时,CP3=2÷,
    ∴t=9﹣=.
    综上所述,满足条件的t的值为3或或4或.
    【点睛】
    本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    22、
    【解析】
    解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.
    【详解】
    ∵,

    若b>2a,
    即a=2,3,4,5,6    b=4,5,6
    符合条件的数组有(2,5)(2,6)共有2个,
    若b<2a,
    符合条件的数组有(1,1)共有1个,
    ∴概率p=.
    故答案为:.
    【点睛】
    本题主要考查了古典概率及其概率计算公式的应用.
    23、(1)125°;(2)125°;(3)∠BOC=90°+n°.
    【解析】
    如图,由BO、CO是角平分线得∠ABC=2∠1,∠ACB=2∠2,再利用三角形内角和得到∠ABC+∠ACB+∠A=180°,则2∠1+2∠2+∠A=180°,接着再根据三角形内角和得到∠1+∠2+∠BOC=180°,利用等式的性质进行变换可得∠BOC=90°+∠A,然后根据此结论分别解决(1)、(2)、(3).
    【详解】
    如图,

    ∵BO、CO是角平分线,
    ∴∠ABC=2∠1,∠ACB=2∠2,
    ∵∠ABC+∠ACB+∠A=180°,
    ∴2∠1+2∠2+∠A=180°,
    ∵∠1+∠2+∠BOC=180°,
    ∴2∠1+2∠2+2∠BOC=360°,
    ∴2∠BOC﹣∠A=180°,
    ∴∠BOC=90°+∠A,
    (1)∵∠ABC=50°,∠ACB=60°,
    ∴∠A=180°﹣50°﹣60°=70°,
    ∴∠BOC=90°+×70°=125°;
    (2)∠BOC=90°+∠A=125°;
    (3)∠BOC=90°+n°.
    【点睛】
    本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数:①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
    24、(1)详见解析;(2);(3)
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
    (2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
    (3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
    【详解】
    (1)连接OC,

    ∵OA=OC,
    ∴∠A=∠OCA,
    ∵AC∥OP,
    ∴∠A=∠BOP,∠ACO=∠COP,
    ∴∠COP=∠BOP,
    ∵PB是⊙O的切线,AB是⊙O的直径,
    ∴∠OBP=90°,
    在△POC与△POB中,

    ∴△COP≌△BOP,
    ∴∠OCP=∠OBP=90°,
    ∴PC是⊙O的切线;
    (2)过O作OD⊥AC于D,
    ∴∠ODC=∠OCP=90°,CD=AC,
    ∵∠DCO=∠COP,
    ∴△ODC∽△PCO,
    ∴,
    ∴CD•OP=OC2,
    ∵OP=AC,
    ∴AC=OP,
    ∴CD=OP,
    ∴OP•OP=OC2
    ∴,
    ∴sin∠CPO=;
    (3)连接BC,
    ∵AB是⊙O的直径,
    ∴AC⊥BC,
    ∵AC=9,AB=1,
    ∴BC==12,
    当CM⊥AB时,
    d=AM,f=BM,
    ∴d+f=AM+BM=1,
    当M与B重合时,
    d=9,f=0,
    ∴d+f=9,
    ∴d+f的取值范围是:9≤d+f≤1.
    【点睛】
    本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
    25、(1)50,360;(2) .
    【解析】
    试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;
    (2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.
    试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)
    由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)
    (2)树状图:

    由树状图可知共有12种结果,抽到1男1女分别为共8种.

    考点:1、扇形统计图,2、条形统计图,3、概率
    26、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.
    【解析】
    (1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.
    (2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.
    【详解】
    (1)设捐款增长率为x,根据题意列方程得:

    解得x1=0.1,x2=-1.9(不合题意,舍去).
    答:捐款增长率为10%.
    (2)12100×(1+10%)=13310元.
    答:第四天该单位能收到13310元捐款.
    27、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
    【解析】
    (1)根据题意和表格中的数据可得到y关于x的函数;
    (2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
    【详解】
    (1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
    即y关于x的函数关系式为y=0.1x+15
    (2)由题意得2.4x+2(30-x)≤70
    解得x≤25,
    ∵y=0.1x+15
    ∴当x=25时,y最大=17.5
    30-x=5,
    ∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
    【点睛】
    此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map