开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年陕西省汉中学市镇巴县中考数学适应性模拟试题含解析

    2021-2022学年陕西省汉中学市镇巴县中考数学适应性模拟试题含解析第1页
    2021-2022学年陕西省汉中学市镇巴县中考数学适应性模拟试题含解析第2页
    2021-2022学年陕西省汉中学市镇巴县中考数学适应性模拟试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年陕西省汉中学市镇巴县中考数学适应性模拟试题含解析

    展开

    这是一份2021-2022学年陕西省汉中学市镇巴县中考数学适应性模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集是,2018的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.7的相反数是( )
    A.7 B.-7 C. D.-
    2.若关于x、y的方程组有实数解,则实数k的取值范围是(  )
    A.k>4 B.k<4 C.k≤4 D.k≥4
    3.若等式(-5)□5=–1成立,则□内的运算符号为( )
    A.+ B.– C.× D.÷
    4.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是(  )

    A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m
    5.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是(  )
    A.120° B.135° C.150° D.165°
    6.不等式组的解集是 (  )
    A.x>-1 B.x>3
    C.-1<x<3 D.x<3
    7.下列图形中,既是中心对称图形又是轴对称图形的是(  )
    A.正五边形 B.平行四边形 C.矩形 D.等边三角形
    8.若分式 有意义,则x的取值范围是
    A.x>1 B.x<1 C.x≠1 D.x≠0
    9.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
    A.方程有两个相等的实数根
    B.方程有两个不相等的实数根
    C.没有实数根
    D.无法确定
    10.2018的相反数是( )
    A. B.2018 C.-2018 D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.

    12.如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tan∠ADN= .

    13.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.

    14.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.
    15.让我们轻松一下,做一个数字游戏:
    第一步:取一个自然数,计算得;
    第二步:算出的各位数字之和得,计算得;
    第三步:算出的各位数字之和得,再计算得;
    依此类推,则____________
    16.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=BD,若四边形AECF为正方形,则tan∠ABE=_____.

    17.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,已知抛物线y=﹣x2+x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.
    (1)求线段DE的长度;
    (2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;
    (3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.

    19.(5分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).

    20.(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.

    21.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
    (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
    (2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
    22.(10分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.

    23.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
    (1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为   度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为   ;
    (2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
    (3)PA、PB、PC满足的等量关系为   .

    24.(14分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
    (1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
    (2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    7的相反数是−7,
    故选:B.
    【点睛】
    此题考查相反数,解题关键在于掌握其定义.
    2、C
    【解析】
    利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.
    【详解】
    解:∵xy=k,x+y=4,
    ∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.

    解不等式得

    故选:C.
    【点睛】
    本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.
    3、D
    【解析】
    根据有理数的除法可以解答本题.
    【详解】
    解:∵(﹣5)÷5=﹣1,
    ∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,
    故选D.
    【点睛】
    考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
    4、C
    【解析】
    分析:结合2个图象分析即可.
    详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
    B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
    C.分析图2可知甲车从G口出,乙车从F口出,故错误.
    D.立交桥总长为:故正确.
    故选C.
    点睛:考查图象问题,观察图象,读懂图象是解题的关键.
    5、C
    【解析】
    这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.
    【详解】
    解:设这个扇形的圆心角的度数为n°,
    根据题意得20π=,
    解得n=150,
    即这个扇形的圆心角为150°.
    故选C.
    【点睛】
    本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).
    6、B
    【解析】
    根据解不等式组的方法可以求得原不等式组的解集.
    【详解】

    解不等式①,得x>-1,
    解不等式②,得x>1,
    由①②可得,x>1,
    故原不等式组的解集是x>1.
    故选B.
    【点睛】
    本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.
    7、C
    【解析】
    分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.
    详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.
    B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.
    C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.
    D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.
    故选C.
    点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.
    8、C
    【解析】
    分式分母不为0,所以,解得.
    故选:C.
    9、B
    【解析】
    试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.
    考点:一元二次方程根的判别式.
    10、C
    【解析】
    【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
    【详解】2018与-2018只有符号不同,
    由相反数的定义可得2018的相反数是-2018,
    故选C.
    【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1或
    【解析】
    由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=时,于是得到DE=DG=AD÷=1,②GE=GF时,根据勾股定理得到DE=.
    【详解】
    解:∵四边形ABCD是菱形,∠B=120°,
    ∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
    ∵EF∥AB,
    ∴四边形ABFE是平行四边形,
    ∴EF∥AB,
    ∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
    ∵DE=DG,
    ∴∠DEG=∠DGE=30°,
    ∴∠FEG=30°,
    当△EFG为等腰三角形时,
    当EF=EG时,EG=,
    如图1,

    过点D作DH⊥EG于H,
    ∴EH=EG=,
    在Rt△DEH中,DE==1,
    GE=GF时,如图2,

    过点G作GQ⊥EF,
    ∴EQ=EF=,在Rt△EQG中,∠QEG=30°,
    ∴EG=1,
    过点D作DP⊥EG于P,
    ∴PE=EG=,
    同①的方法得,DE=,
    当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
    故答案为1或.
    【点睛】
    本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键.
    12、
    【解析】
    M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度.再利用∠ADN=∠DNC即可求得tan∠ADN.
    【详解】
    解:在正方形ABCD中,BC=CD=1.
    ∵DM=1,
    ∴CM=2,
    ∵M、N两点关于对角线AC对称,
    ∴CN=CM=2.
    ∵AD∥BC,
    ∴∠ADN=∠DNC,


    故答案为
    【点睛】
    本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义.
    13、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,

    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.
    14、-1.
    【解析】
    解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.
    15、1
    【解析】
    根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
    【详解】
    解:由题意可得,
    a1=52+1=26,
    a2=(2+6)2+1=65,
    a3=(6+5)2+1=1,
    a4=(1+2+2)2+1=26,

    ∴2019÷3=673,
    ∴a2019= a3=1,
    故答案为:1.
    【点睛】
    本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
    16、
    【解析】
    利用正方形对角线相等且互相平分,得出EO=AO=BE,进而得出答案.
    【详解】

    解:∵四边形AECF为正方形,
    ∴EF与AC相等且互相平分,
    ∴∠AOB=90°,AO=EO=FO,
    ∵BE=DF=BD,
    ∴BE=EF=FD,
    ∴EO=AO=BE,
    ∴tan∠ABE= = .
    故答案为:
    【点睛】
    此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=BE是解题关键.
    17、
    【解析】

    如图,连接BB′,
    ∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
    ∴AB=AB′,∠BAB′=60°,
    ∴△ABB′是等边三角形,
    ∴AB=BB′,
    在△ABC′和△B′BC′中,

    ∴△ABC′≌△B′BC′(SSS),
    ∴∠ABC′=∠B′BC′,
    延长BC′交AB′于D,
    则BD⊥AB′,
    ∵∠C=90∘,AC=BC=,
    ∴AB==2,
    ∴BD=2×=,
    C′D=×2=1,
    ∴BC′=BD−C′D=−1.
    故答案为:−1.
    点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.

    三、解答题(共7小题,满分69分)
    18、 (1)2 ;(2) ;(3)见解析.
    【解析】
    分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得△ACO∽△EAH,根据对应边成比例求得EH的长,进继而求得DE的长;
    (2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m²+m+),则Q(m,m-),根据S△MFP=S△MQF+S△MQP,得出S△MFP= -m²+m+,根据解析式即可求得,△MPF面积的最大值;
    (3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可.
    本题解析:(1)对于抛物线y=﹣x2+x+,
    令x=0,得y=,即C(0,),D(2,),
    ∴DH=,
    令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,
    ∴A(﹣1,0),B(3,0),
    ∵AE⊥AC,EH⊥AH,
    ∴△ACO∽△EAH,
    ∴=,即=,
    解得:EH=,
    则DE=2;
    (2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),
    连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,
    直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,
    联立得:F (0,﹣),P(2,),
    过点M作y轴的平行线交FH于点Q,
    设点M(m,﹣m2+m+),则Q(m, m﹣),(0<m<2);
    ∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,
    ∵对称轴为:直线m=<2,开口向下,
    ∴m=时,△MPF面积有最大值: ;
    (3)由(2)可知C(0,),F(0,),P(2,),
    ∴CF=,CP==,
    ∵OC=,OA=1,
    ∴∠OCA=30°,
    ∵FC=FG,
    ∴∠OCA=∠FGA=30°,
    ∴∠CFP=60°,
    ∴△CFP为等边三角形,边长为,
    翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,
    1)当K F′=KF″时,如图3,
    点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),
    ∴OK=3;
    2)当F′F″=F′K时,如图4,
    ∴F′F″=F′K=4,
    ∵FP的解析式为:y=x﹣,
    ∴在平移过程中,F′K与x轴的夹角为30°,
    ∵∠OAF=30°,
    ∴F′K=F′A
    ∴AK=4
    ∴OK=4﹣1或者4+1;
    3)当F″F′=F″K时,如图5,

    ∵在平移过程中,F″F′始终与x轴夹角为60°,
    ∵∠OAF=30°,
    ∴∠AF′F″=90°,
    ∵F″F′=F″K=4,
    ∴AF″=8,
    ∴AK=12,
    ∴OK=1,
    综上所述:OK=3,4﹣1,4+1或者1.

    点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.
    19、5.6千米
    【解析】
    设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.
    【详解】
    设PD的长为x千米,DA的长为y千米,
    在Rt△PAD中,tan∠DPA=,
    即tan18°=,
    ∴y=0.33x,
    在Rt△PDB中,tan∠DPB=,
    即tan53°=,
    ∴y+5.6=1.33x,
    ∴0.33x+5.6=1.33x,解得x=5.6,
    答:此时观光船到大桥AC段的距离PD的长为5.6千米.
    【点睛】
    本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
    20、树高为 5.5 米
    【解析】
    根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.
    【详解】
    ∵∠DEF=∠DCB=90°,∠D=∠D,
    ∴△DEF∽△DCB
    ∴ ,
    ∵DE=0.4m,EF=0.2m,CD=8m,
    ∴,
    ∴CB=4(m),
    ∴AB=AC+BC=1.5+4=5.5(米)
    答:树高为 5.5 米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
    21、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
    22、 (1)① 30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.
    【解析】
    试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;
    (2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;
    (3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.
    解:(1)①;30;
    (2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:
    500k1+30=80,
    ∴k1=0.1,
    500k2=100,
    ∴k2=0.2
    故所求的解析式为y1=0.1x+30; y2=0.2x;
    (3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;
    当x=300时,y=1.
    故由图可知当通话时间在300分钟内,选择通话方式②实惠;
    当通话时间超过300分钟时,选择通话方式①实惠;
    当通话时间在300分钟时,选择通话方式①、②一样实惠.
    23、(1)150,(1)证明见解析(3)
    【解析】
    (1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
    (1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
    (3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
    试题解析:
    【详解】
    解:(1)∵△ABP≌△ACP′,
    ∴AP=AP′,
    由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
    ∴△PAP′为等边三角形,
    ∴∠APP′=60°,
    ∵∠PAC+∠PCA=×60° =30°,
    ∴∠APC=150°,
    ∴∠P′PC=90°,
    ∴PP′1+PC1=P′C1,
    ∴PA1+PC1=PB1,
    故答案为150,PA1+PC1=PB1;
    (1)如图,作°,使,连接,.过点A作AD⊥于D点.
    ∵°,
    即,
    ∴.
    ∵AB=AC,,
    ∴.

    ∴,°.
    ∵AD⊥,
    ∴°.
    ∴在Rt中,.
    ∴.
    ∵°,
    ∴°.
    ∴°.
    ∴在Rt中,.
    ∴;
    (3)如图1,与(1)的方法类似,
    作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
    作AD⊥PP′于D,
    由旋转变换的性质可知,∠PAP′=α,P′C=PB,
    ∴∠APP′=90°-,
    ∵∠PAC+∠PCA=,
    ∴∠APC=180°-,
    ∴∠P′PC=(180°-)-(90°-)=90°,
    ∴PP′1+PC1=P′C1,
    ∵∠APP′=90°-,
    ∴PD=PA•cos(90°-)=PA•sin,
    ∴PP′=1PA•sin,
    ∴4PA1sin1+PC1=PB1,
    故答案为4PA1sin1+PC1=PB1.
    【点睛】
    本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
    24、(1)10,1;(2).
    【解析】
    (1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
    (2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
    【详解】
    解:(1)图象过点,

    解得


    的顶点坐标为.

    ∴当时,最大=1.
    答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
    (2)∵函数图象的对称轴为直线,
    可知点关于对称轴的对称点是,
    又∵函数图象开口向下,
    ∴当时,.
    答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
    【点睛】
    本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.

    相关试卷

    2024年陕西省 汉中市镇巴县中考一模数学试题(原卷版+解析版):

    这是一份2024年陕西省 汉中市镇巴县中考一模数学试题(原卷版+解析版),文件包含2024年陕西省汉中市镇巴县中考一模数学试题原卷版docx、2024年陕西省汉中市镇巴县中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    2022-2023学年陕西省汉中学市镇巴县七下数学期末教学质量检测模拟试题含答案:

    这是一份2022-2023学年陕西省汉中学市镇巴县七下数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列方程中是二项方程的是等内容,欢迎下载使用。

    云南省临沧市镇康县2021-2022学年中考数学适应性模拟试题含解析:

    这是一份云南省临沧市镇康县2021-2022学年中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,1﹣的相反数是,下列判断错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map